Comparison of the Quenching Effects of Two Main Components of Ziziphi Spinosae Semen on Serum Albumin Fluorescence


Swertisin (6-glucosyl flavonoid) and spinosin (2″-β-O-glucopyranosyl swertisin) are two main components from Ziziphi Spinosae Semen, with anti-anxiety and hypnosis effects. The paper aims to compare the differences between the two compounds binding with serum albumins (BSA and HSA). Swertisin and spinosin statically quench intrinsic fluorescence of serum proteins by binding to proteins to form complexes. The fluorescence quenching rates of BSA induced by swertisin or spinosin are faster than those of HSA resulted by swertisin or spinosin, respectively. Each serum protein has only one binding site respectively accessible to the two compounds. Hydrophobic force and hydrogen bond play the important roles during the biding process of swertisin with proteins, but van der Waals force and hydrogen bond are major driving forces for spinosin binding to proteins. Synchronous fluorescence data show that spinosin binds to BSA and HSA and thus changes Tyr and Trp residue microenvironments, and has a greater effect on the latter. Compared with swertisin, spinosin has a stronger effect on the α-helix of proteins. But the distance between swertisin and proteins is slightly closer than spinosin. These findings will contribute to further understand the reaction of Ziziphi Spinosae Semen in the liver phase I oxidation, intestinal hydrolysis and deparaffin metabolism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Li H, Wu F, Tan J, Wang K, Zhang C, Zheng H, Hu F (2016) Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive components. J Pharm Biomed Anal 122:21–28

    CAS  Article  Google Scholar 

  2. 2.

    Liu X, Ling Z, Zhou X, Ahmad F, Zhou Y (2016) Comprehensive spectroscopic probing the interaction and conformation impairment of bovine serum albumin (BSA) by herbicide butachlor. J Photochem Photobiol B 162:332–339

    CAS  Article  Google Scholar 

  3. 3.

    Leboffe L, Di MA, Trezza V, Polticelli F, Ascenzi P (2017) Human serum albumin: a modulator of cannabinoid drugs. IUBMB Life 69(11):834–840

    CAS  Article  Google Scholar 

  4. 4.

    Hekmat A, Hajebrahimi Z, Motamedzade A (2017) Structural changes of human serum albumin (HSA) in simulated microgravity. Protein Pept Lett 24(11):1030–1039

    CAS  Article  Google Scholar 

  5. 5.

    Ishima Y, Maruyama T (2016) Human serum albumin as carrier in drug delivery systems. Yakuqaku Zasshi 136(1):39–47

    CAS  Article  Google Scholar 

  6. 6.

    Shahabadi N, Maghsudi M, Kiani Z, Pourfoulad M (2011) Multispectroscopic studies on the interaction of 2- tert -butylhydroquinone (TBHQ), a food additive, with bovine serum albumin. Food Chem 124(3):1063–1068

    CAS  Article  Google Scholar 

  7. 7.

    Sekula B, Zielinski K, Bujacz A (2013) Crystallographic studies of the complexes of bovine and equine serum albumin with 3,5-diiodosalicylic acid. Int J Biol Macromol 60(6):316–324

    CAS  Article  Google Scholar 

  8. 8.

    Suryawanshi VD, Walekar LS, Gore AH, Anbhule PV, Kolekar GB (2016) Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. J Pharm Anal 6(1):56–63

    Article  Google Scholar 

  9. 9.

    Li En W, Xue Qiong Z, Yan Qi Y, Yong He Z (2012) Augmentative effect of spinosin on pentobarbital-induced loss of righting reflex in mice associated with presynaptic 5-HT1A receptor. J Pharm Pharmacol 64(2):277–282

    Article  Google Scholar 

  10. 10.

    Yan Y, Li Q, Du CH, Jia JP, Feng HX, Qin XM (2017) Investigation of the potentially effective components of semen Ziziphi Spinosae based on “in vitro to in vivo” translation approach. Yaoxuexuebao 52(02):283–290

    Google Scholar 

  11. 11.

    Yan Y, Zhang M, Cui XF, Zhang FS, Gao XX, Guo XD, Du CH, Qin XM (2019) Discussion on research ideas for process in vivo of chemical compositions from Ziziphi Spinosae Semen and its quality marker. Chin Tradit Herb Drugs 50(2):299–309

    Google Scholar 

  12. 12.

    Zhang Y, Zhang T, Wang F, Xie J (2015) Brain tissue distribution of Spinosin in rats determined by a new high-performance liquid chromatography–electrospray ionization–mass/mass spectrometry method. J Chromatogr Sci 53(1):97–103

    CAS  Article  Google Scholar 

  13. 13.

    Liu J, Zhai WM, Yang YX, Shi JL, Liu QT, Liu GL, Fang N, Li J, Guo JY (2015) GABA and 5-HT systems are implicated in the anxiolytic-like effect of spinosin in mice. Pharmacol Biochem Behav 128:41–49

    CAS  Article  Google Scholar 

  14. 14.

    Wang LE, Bai YJ, Shi XR, Cui XY, Cui SY, Zhang F, Zhang QY, Zhao YY, Zhang YH (2008) Spinosin, a -glycoside flavonoid from semen Zizhiphi Spinozae, potentiated pentobarbital-induced sleep via the serotonergic system. Pharmacol Biochem Behav 90(3):399–403

    CAS  Article  Google Scholar 

  15. 15.

    Oh HK, Jeon SJ, Lee S, Lee HE, Kim E, Park SJ, Kim HN, Jung WY, Cheong JH, Jang DS (2016) Swertisin ameliorates pre-pulse inhibition deficits and cognitive impairment induced by MK-801 in mice. J Psychopharmacol 31(2):250–259

    Article  Google Scholar 

  16. 16.

    Lee HE, Jeon SJ, Ryu B, Park SJ, Ko SY, Lee Y, Kim E, Lee S, Kim H, Jang DS (2016) Swertisin, a C-glucosylflavone, ameliorates scopolamine-induced memory impairment in mice with its adenosine A1 receptor antagonistic property. Behav Brain Res 306:137–145

    CAS  Article  Google Scholar 

  17. 17.

    Srivastava A, Dadheech N, Vakani M, Gupta S (2018) Swertisin ameliorates diabetes by triggering pancreatic progenitors for islet neogenesis in Streptozotocin treated BALB/c mice. Biomed Pharmacother 100:221–225

    CAS  Article  Google Scholar 

  18. 18.

    Li Y, Guo Q, Yan Y, Chen T, Du C, Du H (2019) Different effects of Forsythia suspensa metabolites on bovine serum albumin (BSA). Spectrochim Acta A Mol Biomol Spectrosc 214:309–319

    CAS  Article  Google Scholar 

  19. 19.

    Yan X, Chen T, Zhang L, Du H (2018) Study of the interactions of forsythiaside and rutin with acetylcholinesterase (AChE). Int J Biol Macromol 119:1344–1152

    CAS  Article  Google Scholar 

  20. 20.

    Miller JN, Fell AF (1980) The characterization of proteins by synchronous and derivative luminescence spectroscopy. J Pharm Pharmacol 32:70P

    CAS  Article  Google Scholar 

  21. 21.

    Siddiqui GA, Siddiqi MK, Khan RH, Naeem A (2018) Probing the binding of phenolic aldehyde vanillin with bovine serum albumin: evidence from spectroscopic and docking approach. Spectrochim Acta A Mol Biomol Spectrosc 203:40–47

    CAS  Article  Google Scholar 

  22. 22.

    Ashoka S, Seetharamappa J, Kandagal PB, Shaikh SMT (2006) Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. J Lumin 121(1):179–186

    CAS  Article  Google Scholar 

  23. 23.

    Yousefi R, Jamshidi M, Shahsavani MB, Nabavizadeh SM, Haghighi MG, Rashidi M, Taheri-Kafrani A, Niazi A, Keshavarz F, Alavinamehr MM (2016) Study on the interaction of three structurally related cationic Pt(II) complexes with human serum albumin: importance of binding affinity and denaturing properties. J Iran Chem Soc 13(4):617–630

    CAS  Article  Google Scholar 

  24. 24.

    Tang J, Luan F, Chen X (2006) Binding analysis of glycyrrhetinic acid to human serum albumin: fluorescence spectroscopy, FTIR, and molecular modeling. Bioorg Med Chem 14(9):3210–3217

    CAS  Article  Google Scholar 

  25. 25.

    Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20(11):3096–3102

    CAS  Article  Google Scholar 

  26. 26.

    Anand U, Jash C, Mukherjee S (2010) Spectroscopic probing of the microenvironment in a protein-surfactant assembly. J Phys Chem B 114(48):15839–15845

    CAS  Article  Google Scholar 

  27. 27.

    Khade BS, Mathe VL, Dongre PM (2017) α-Amylase binding to thermal plasma synthesized zinc oxide nanosheets: a fluorescence study. J Lumin 187:449–456

    CAS  Article  Google Scholar 

  28. 28.

    Klotz IM (2010) Physiochemical aspects of drug-protein interactions: a general perspective. Ann N Y Acad Sci 226(1):18–35

    Google Scholar 

  29. 29.

    Desfrançois C, Carles S, Schermann JP (2000) Weakly bound clusters of biological interest. Chem Rev 100(11):3943–3962

    Article  Google Scholar 

  30. 30.

    Pitera JW, Gunsteren WF (2001) The importance of solute−solvent van der Waals interactions with interior atoms of biopolymers. J Am Chem Soc 123(13):3163–3164

    CAS  Article  Google Scholar 

  31. 31.

    Zhang YZ, Zhou B, Liu YX, Zhou CX, Ding XL, Liu Y (2008) Fluorescence study on the interaction of bovine serum albumin with P-Aminoazobenzene. J Fluoresc 18(1):109–118

    CAS  Article  Google Scholar 

  32. 32.

    Shi JH, Chen J, Wang J, Zhu YY, Wang Q (2015) Binding interaction of sorafenib with bovine serum albumin: spectroscopic methodologies and molecular docking. Spectrochim Acta A Mol Biomol Spectrosc 149:630–637

    CAS  Article  Google Scholar 

  33. 33.

    Jiao L, Li Y, Zhang Y, Liu J, Xie J, Zhang K, Zhou A (2017) Degradation kinetics of 6‴-p-coumaroylspinosin and identification of its metabolites by rat intestinal flora. J Agric Food Chem 65(22):4449–4455

    CAS  Article  Google Scholar 

  34. 34.

    Li Q, Du CH, Zhang M, Yan Y, Gao Y, Qin XM (2017) Investigation of effective components screening of Ziziphi Spinosae Semen based on serum pharmacochemistry and network pharmacology. Chin Tradit Herb Drugs 52(02):283–290

    Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (No. 81403130), Shanxi Scholarship Council of China (No. 2017-021) and Natural Science Foundation of Shanxi Province (No. 201801D121290).

Author information



Corresponding author

Correspondence to Huizhi Du.

Ethics declarations

Conflict of Interest

The authors claim that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 508 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Qu, C., Wang, Y. et al. Comparison of the Quenching Effects of Two Main Components of Ziziphi Spinosae Semen on Serum Albumin Fluorescence. J Fluoresc 29, 1113–1123 (2019).

Download citation


  • Swertisin
  • Spinosin
  • Human serum albumin
  • Bovine serum albumin
  • Fluorescence quenching