Skip to main content
Log in

Monitoring Subcellular Stress Response via a Cell-permeant Rotor Dye

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Monitoring the response of cells to environmental challenges, e.g. after exposure to oxidative stress or pharmaceutical substances, not only provides clues for fundamental biological processes but can also serve as a valuable tool in drug development. Obtaining such insights on the subcellular level in a rapid and simple manner is therefore of major importance. Ideally, such an approach not only reports on compartment-specific responses but also allows for an inherent subcellular segmentation using the same data set. Here, we propose such a method based on fluorescence lifetimes of a single cell-permeant rotor dye with a broad emission spectrum. Using a k-means clustering approach, a straightforward, unsupervised, and rapid segmentation protocol allows for subcellular segmentation in addition to monitoring the differential response of these compartments to environmental stress, e.g. induced by hydrogen peroxide or the widely used chemotherapeutic cisplatin. Based on our data we suggest that our automatable approach can be a valuable and robust tool for pharmaceutical screening applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Keller JP, Looger LL (2016) The oscillating stimulus transporter assay, OSTA: quantitative functional imaging of transporter protein activity in time and frequency domains. Mol Cell 64 (1):199–212. https://doi.org/10.1016/j.molcel.2016.09.001

    Article  PubMed  CAS  Google Scholar 

  2. Doria F, Folini M, Grande V, Cimino-Reale G, Zaffaroni N, Freccero M (2015) Naphthalene diimides as red fluorescent pH sensors for functional cell imaging. Org Biomol Chem 13:570–576. https://doi.org/10.1039/C4OB02054E

    Article  PubMed  CAS  Google Scholar 

  3. Braunagel M, Graser A, Reiser M, Notohamiprodjo M (2014) The role of functional imaging in the era of targeted therapy of renal cell carcinoma. World J Urol 32(1):47–58. https://doi.org/10.1007/s00345-013-1074-7

    Article  PubMed  CAS  Google Scholar 

  4. Donato MT, Jiménez N, Castell JV, Gómez-Lechón MJ (2004) Fluorescence-based assays for screening nine cytochrome p450 (p450) activities in intact cells expressing individual human p450 enzymes. Drug Metab Dispos 32(7):699–706. https://doi.org/10.1124/dmd.32.7.699

    Article  PubMed  CAS  Google Scholar 

  5. Hidalgo G, Burns A, Herz E, Hay AG, Houston PL, Wiesner U, Lion LW (2009) Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors ∇‡. Appl Environ Microbiol 75:7426. http://aem.asm.org/content/75/23/7426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M (2016) A rotational BODIPY nucleotide: an environment-sensitive fluorescence-lifetime probe for DNA interactions and applications in live-cell microscopy. Angew Chem Int Ed 55:174

    Article  CAS  Google Scholar 

  7. Kuimova MK (2012) Molecular rotors image intracellular viscosity. Chimia (Aarau) 66(4):159–165. https://doi.org/10.2533/chimia.2012.159

    Article  CAS  Google Scholar 

  8. Haidekker MA, Theodorakis EA (2007) Molecular rotors–fluorescent biosensors for viscosity and flow. Org Biomol Chem 5(11):1669–1678

    Article  PubMed  CAS  Google Scholar 

  9. Wu YL, Štefl M, Olzyńska A, Hof M, Yahioglu G, Yip P, Casey DR, Ces O, Humpolíčková J, Kuimova MK (2013) Molecular rheometry: direct determination of viscosity in Lo and Ld lipid phases via fluorescence lifetime imaging. Phys Chem Chem Phys 15:14986

    Article  PubMed  CAS  Google Scholar 

  10. Alberts B (2015) Molecular biology of the cell, 6th edn. Garland Science, Taylor and Francis Group, New York

    Google Scholar 

  11. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    Article  PubMed  CAS  Google Scholar 

  12. Nikić I, Plass T, Schraidt O, Szymański J, Briggs JA, Schultz C, Lemke EA (2014) Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew Chem Int Ed Engl 53(8):2245–2249. https://doi.org/10.1002/anie.201309847

    Article  PubMed  CAS  Google Scholar 

  13. Niehörster T, Löschberger A, Gregor I, Krämer B, Rahn HJ, Patting M, Koberling F, Enderlein J, Sauer M (2016) Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods 13(3):257–262. https://doi.org/10.1038/nmeth.3740

    Article  PubMed  CAS  Google Scholar 

  14. Ramadass R, Bereiter-Hahn J (2008) How DASPMI reveals mitochondrial membrane potential: fluorescence decay kinetics and steady-state anisotropy in living cells. Biophys J 95(8):4068–4076. https://doi.org/10.1529/biophysj.108.135079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129

    Article  Google Scholar 

  16. Ramadass R, Bereiter-Hahn J (2007) Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays. J Phys Chem B 111(26):7681–7690. https://doi.org/10.1021/jp070378k

    Article  PubMed  CAS  Google Scholar 

  17. Stiehl O, Weiss M (2016) Heterogeneity of crowded cellular fluids on the meso- and nanoscale. Soft Matter 12:9413

    Article  PubMed  CAS  Google Scholar 

  18. Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3):402–413. https://doi.org/10.1016/j.cell.2010.12.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H (1996) Free radical-independent protection by nerve growth factor and Bcl-2 of PC12 cells from hydrogen peroxide-triggered apoptosis. J Biochem 120(3):540–546

    Article  PubMed  CAS  Google Scholar 

  20. Jordan P, Carmo-Fonseca M (1998) Cisplatin inhibits synthesis of ribosomal RNA in vivo. Nucleic Acids Res 26(12):2831– 2836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16

    Article  PubMed  CAS  Google Scholar 

  22. Digman M, Gratton E (2012) In: Egelman EH (ed) Comprehensive biophysics. Elsevier, Amsterdam, pp 24–38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Weiss.

Additional information

O. Stiehl and A. Veres contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiehl, O., Veres, A. & Weiss, M. Monitoring Subcellular Stress Response via a Cell-permeant Rotor Dye. J Fluoresc 28, 605–613 (2018). https://doi.org/10.1007/s10895-018-2223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2223-6

Keywords

Navigation