Journal of Fluorescence

, Volume 27, Issue 2, pp 603–610 | Cite as

Design and Fabrication a Gold Nanoparticle-DNA Based Nanobiosensor for Detection of microRNA Involved in Alzheimer's Disease

  • Shokoufeh Delkhahi
  • Mahdi Rahaie
  • Fereshteh Rahimi


MicroRNAs are small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. Regards to important role of these biomolecules in human disease progress, to produce sensitive, simple and cost-effective assays for microRNAs are in urgent demand. miR-137 in Alzheimer’s patients has demonstrated its potential as non-invasive biomarkers in blood for Alzheimer’s disease diagnosis and prognosis. This paper describes a novel, sensitive and specific microRNA assay based on Colorimetric detection of gold nanoparticles and hybridization chain reaction amplification (HCR). The new strategy eliminates the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment. The detection process is visible with the naked eyes and detection limit for this method is 0.25nM which is less than or at least comparable with the previous methods based on colorimetric of AuNPs. The important features of this method are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. In conclusion, the simple and fast nanobiosensor can clinically be used for the early detection of Alzheimer’s disease by direct detection of the plasma miR-137 in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.


Alzheimer’s disease microRNAs Nanobiosensor Gold nanoparticles Hybridization Chain Reaction Colorimetric 



We would to thank the University of Tehran for providing financial and instrumental supports in this work.


  1. 1.
    Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191CrossRefPubMedGoogle Scholar
  2. 2.
    Rao AT, Degnan AJ, Levy LM (2014) Genetics of Alzheimer disease. AJNR Am J Neuroradiol 35(3):457–458CrossRefPubMedGoogle Scholar
  3. 3.
    Hizir MS, Balcioglu M, Rana M, Robertson NM, Yigit MVV (2014) Simultaneous detection of circulating oncomiRs from body fluids for prostate cancer staging using nanographene oxide. ACS Appl Mater Interfaces 6(17):14772–14778PubMedGoogle Scholar
  4. 4.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866CrossRefPubMedGoogle Scholar
  5. 5.
    Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Naderi-Manesh H (2016) An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron 77:99–106CrossRefPubMedGoogle Scholar
  6. 6.
    Delay C, Mandemakers W, Hébert SS (2012) MicroRNAs in Alzheimer’s disease. Neurobiol Dis 46:285–290CrossRefPubMedGoogle Scholar
  7. 7.
    Grasso M, Piscopo P, Confaloni A, Denti MA (2014) Circulating miRNAs as biomarkers for neurodegenerative disorder. Molecules 19(5):6891–6910CrossRefPubMedGoogle Scholar
  8. 8.
    Ebert MS, Sharp PA (2012) Roles for MicroRNAs in conferring robustness to biological processes. Cell 149(3):515–524CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dorval V, Nelson PT, Hébert SS (2013) Circulating microRNAs in Alzheimer’s disease: the search for novel biomarkers. Front Mol Neurosci 6:24PubMedPubMedCentralGoogle Scholar
  10. 10.
    Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci 31(41):14820–14830CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235(2):491–496CrossRefPubMedGoogle Scholar
  12. 12.
    Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS ONE 8(7), e69807CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li J, Yao B, Huang H, Wang Z, Sun CH, Fan Y, Chang Q, Li SL, Wang X, Xi JZ (2009) Real-time polymerase chain reaction MicroRNA detection based on enzymatic stem-loop probes ligation. Anal Chem 81(13):5446–5451CrossRefPubMedGoogle Scholar
  14. 14.
    Yu CY, Yin BC, Ye BC (2013) A universal real-time PCR assay for rapid quantification of microRNAs via the enhancement of base-stacking hybridization. Chem Commun 49:8247–8249CrossRefGoogle Scholar
  15. 15.
    Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3(2):321–329CrossRefPubMedGoogle Scholar
  16. 16.
    Várallyay E, Burgyán J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3(2):190–196CrossRefPubMedGoogle Scholar
  17. 17.
    EunKim J, Choi J, Colas M, HaKim D, Lee H (2016) Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens Bioelectron 80:543–559CrossRefGoogle Scholar
  18. 18.
    Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107(24):10837–10841CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li J, Fu H-E, Wu L-J, Zheng A-X, Chen G-N, Yang H-H (2012) General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Anal Chem 84(12):5309–5315CrossRefPubMedGoogle Scholar
  20. 20.
    Li RD, Yin BC, Ye BC (2016) Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Biosens Bioelectron 86:1011–1016CrossRefPubMedGoogle Scholar
  21. 21.
    Xia N, Zhang L, Wang G, Feng Q, Liu L (2013) Label free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual amplification of gold nanoparticles. Biosens Bioelectron 47:461–466CrossRefPubMedGoogle Scholar
  22. 22.
    Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101(43):15275–15278CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, Liu J, He L (2013) Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem 85(16):7689–7695CrossRefPubMedGoogle Scholar
  24. 24.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  25. 25.
    Volkert AA, Subramaniam V, Haes AJ (2011) Implications of citrate concentrationduring the seeded growth synthesis of gold nanoparticles. Chem Commun 47:478–480CrossRefGoogle Scholar
  26. 26.
    Rahaie M, Ghai R, Babic B, Dimitrov K (2009) Synthesis and characterization of DNA-based micro- and nanodumbbell structures. J Bionanosci 3:73–79CrossRefGoogle Scholar
  27. 27.
    Lyubchenko YL, Shlyakhtenko LS, Ando T (2011) Imaging of nucleic acids with atomic force microscopy. Methods 54(2):274–283CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhilei G, Meihua L, Ping W, Hao P, Juan Y, Jiye S, Qing H, Dannong H, Chunhai F, Xiaolei Z (2014) Hybridization chain reaction amplification of MicroRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem 86(4):2124–2130CrossRefGoogle Scholar
  29. 29.
    Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101(39):14036–14039CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Deng H, Zhang X, Kumar A, Zou G (2013) Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of Bacillus anthracis. Chem Commun 49(1):51–53CrossRefGoogle Scholar
  31. 31.
    Seow N, Tan YN, Yung L-YL (2014) Gold nanoparticle–dynamic light scattering tandem for the rapid and quantitative detection of the let7 MicroRNA family. Part Part Syst Charact 31(12):1260–1268CrossRefGoogle Scholar
  32. 32.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shokoufeh Delkhahi
    • 1
  • Mahdi Rahaie
    • 1
  • Fereshteh Rahimi
    • 1
  1. 1.Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran

Personalised recommendations