Journal of Fluorescence

, Volume 27, Issue 1, pp 181–189 | Cite as

Surface Molecular Imprinting on Silica-Coated CdTe Quantum Dots for Selective and Sensitive Fluorescence Detection of p-aminophenol in Water

  • Xialin Lu
  • Fangdi Wei
  • Guanhong Xu
  • Yanzi Wu
  • Jing Yang
  • Qin Hu


In this paper, a selective and sensitive sensor for the determination of p-aminophenol (PAP) was developed by grafting molecularly imprinted polymers (MIPs) on the surface of silica-coated CdTe quantum dots (CdTe@SiO2@MIPs). The obtained CdTe@SiO2@MIPs were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and fluorescence spectroscopy. The fluorescence intensity of CdTe@SiO2@MIPs was more strongly quenched by PAP than that of the structural analogues of PAP. Under the optimal conditions, the fluorescence intensity of the CdTe@SiO2@MIPs decreased sensitively with the increase of PAP concentration in the range of 0.05–50 μM. The limit of detection was 0.02 μM (3σ/K sv). The sensor was successfully used to determine PAP in tap and lake water samples, and the average recoveries of PAP at various spiking levels ranged from 97.33 % to 103.3 % with relative standard deviations below 20 %.


Silica-coated CdTe quantum dots Surface molecular imprinting p-aminophenol Fluorimetry 



This work was financially supported by the National Natural Science Foundation of China (No. 81171937).


  1. 1.
    Sun QJ, Wang YA, Li LS, Wang DY, Zhu T, Xu J, Yang CH, Li YF (2007) Bright multicoloured light emitting diodes based on quantum dots. Nat Photonics 1(12):717–722CrossRefGoogle Scholar
  2. 2.
    Cui L, He XP, Chen GR (2015) Recent progress in quantum dot based sensors. RSC Adv 5(3–4):26644–26653CrossRefGoogle Scholar
  3. 3.
    Dehbozorgi A, Tashkhourian J, Zare S (2015) Fluorescence determination of warfarin using TGA-capped CdTe quantum dots in human plasma samples. J Fluoresc 25(6):1887–1895CrossRefPubMedGoogle Scholar
  4. 4.
    Liu HL, Fang GZ, Li CM, Pan MF, Liu CC, Fan C, Wang S (2012) Molecularly imprinted polymer on ionic liquid-modified CdSe/ZnS quantum dots for the highly selective and sensitive optosensing of tocopherol. J Mater Chem 22(37):19882–19887CrossRefGoogle Scholar
  5. 5.
    Zhao WH, Sheng N, Zhu R, Wei FD, Cai Z, Zhai MJ, Du SH, Hu Q (2010) Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples. J Hazard Mater 179(1–3):223–229CrossRefPubMedGoogle Scholar
  6. 6.
    Xu SF, Lu HZ (2015) Ratiometric fluorescence and mesoporous structure dual signal amplification for sensitive and selective detection of TNT based on MIP@QD fluorescence sensors. Chem Commun 51(15):3200–3203CrossRefGoogle Scholar
  7. 7.
    Diltemiz SE, Say R, Büyüktiryaki S, Hür D, Denizli A, Ersöz A (2008) Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta 75(4):890–896CrossRefPubMedGoogle Scholar
  8. 8.
    Wang HF, He Y, Ji TR, Yan XP (2009) Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81(81):1615–1621CrossRefPubMedGoogle Scholar
  9. 9.
    Ge SG, Zhang CC, Yu F, Yan M, Yu JH (2011) Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modified chemiluminescence sensor for deltamethrin detection. Sensor Actuat B-Chem 156(1):222–227CrossRefGoogle Scholar
  10. 10.
    Zhang W, He XW, Chen Y, Li WY, Zhang YK (2011) Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens Bioelectron 26(5):2553–2558CrossRefPubMedGoogle Scholar
  11. 11.
    Ye T, Lu SY, Hu QQ, Jiang X, Wei GF, Wang JJ, Lu JQ (2011) One-bath synthesis of hydrophilic molecularly imprinted quantum dots for selective recognition of chlorophenol. Chin Chem Lett 22(10):1253–1256Google Scholar
  12. 12.
    Ge SG, Lu JJ, Ge L, Yan M, Yu JH (2011) Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochim Acta A 79(79):1704–1709CrossRefGoogle Scholar
  13. 13.
    Zhang W, He XW, Chen Y, Li WY, Zhang YK (2012) Molecularly imprinted polymer anchored on the surface of denatured bovine serum albumin modified CdTe quantum dots as fluorescent artificial receptor for recognition of target protein. Biosens Bioelectron 31(1):84–89CrossRefPubMedGoogle Scholar
  14. 14.
    Yang M, Han AJ, Duan JL, Li ZP, Lai YC, Zhan JH (2012) Magnetic nanoparticles and quantum dots co-loaded imprinted matrix for pentachlorophenol. J Hazard Mater 237-238(17):63–70CrossRefPubMedGoogle Scholar
  15. 15.
    Chen YP, Wang DN, Yin YM, Wang LY, Wang XF, Xie MX (2012) Quantum dots capped with dummy molecularly imprinted film as luminescent sensor for the determination of tetrabromobisphenol A in water and soils. J Agric Food Chem 60(42):10472–10479CrossRefPubMedGoogle Scholar
  16. 16.
    Kim YD, Jeon JB, Chang JY (2012) CdSe quantum dot-encapsulated molecularly imprinted mesoporous silica particles for fluorescent sensing of bisphenol A. J Mater Chem 22(45):24075–24080CrossRefGoogle Scholar
  17. 17.
    Liu HL, Fang GZ, Zhu HD, Li CM, Liu CC, Wang S (2013) A novel ionic liquid stabilized molecularly imprinted optosensing material based on quantum dots and grapheme oxide for specific recognition of vitamin E. Biosens Bioelectron 47(10):127–132CrossRefPubMedGoogle Scholar
  18. 18.
    Li DY, He XW, Chen Y, Li WY, Zhang YK (2013) Novel hybrid structure silica/CdTe/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin. ACS Appl Mater Interfaces 5(23):12609–12616CrossRefPubMedGoogle Scholar
  19. 19.
    Dan L, Wang HF (2013) Mn-doped ZnS quantum dot imbedded two-fragment imprinting silica for enhanced room temperature phosphorescence probing of domoic acid. Anal Chem 85(10):4844–4848CrossRefPubMedGoogle Scholar
  20. 20.
    Chao MR, Hu CW, Chen JL (2014) Comparative syntheses of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors. Biosens Bioelectron 61(6):471–477CrossRefPubMedGoogle Scholar
  21. 21.
    Ren XH, Liu HC, Chen LG (2014) Fluorescent detection of chlorpyrifos using Mn(II)-doped ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta 182(1):193–200Google Scholar
  22. 22.
    Sadeghi S, Jahani M, Belador F (2016) The development of a new optical sensor based on the Mn doped ZnS quantum dots modified with the molecularly imprinted polymers for sensitive recognition of florfenicol. Spectrochim Acta A 159:83–89CrossRefGoogle Scholar
  23. 23.
    Li HB, Li YL, Cheng J (2010) Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem Mater 22(8):2451–2457CrossRefGoogle Scholar
  24. 24.
    Fang GZ, Fan C, Liu HL, Pan MF, Zhu HD, Wang S (2014) A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for highly selective optosensing of mycotoxin zearalenone in cereal samples. RSC Adv 4(6):2764–2771CrossRefGoogle Scholar
  25. 25.
    Chantada-Vázquez MP, Sánchez-González J, Peña-Vázquez E, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A (2016) Synthesis and characterization of novel molecularly imprinted polymer-coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens Bioelectron 75:213–221CrossRefPubMedGoogle Scholar
  26. 26.
    Beye H, Walter W (1997) In organic Phys Chem. Albion Publishing LtdGoogle Scholar
  27. 27.
    Bessems JGM, Vermeulen NPE (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31(1):55–138CrossRefPubMedGoogle Scholar
  28. 28.
    Harmon RC, Kiningham KK, Valentovic MA (2006) Pyruvate reduces 4-aminophenol in vitro toxicity. Toxicol Appl Pharmacol 213(2):179–186CrossRefPubMedGoogle Scholar
  29. 29.
    Schultz B (1984) Determination of 4-aminophenol in water by high-performance liquid chromatography with fluorescence detection. J Chromatogr 299(2):484–486CrossRefPubMedGoogle Scholar
  30. 30.
    Bloomfield MS (2002) A sensitive and rapid assay for 4-aminophenol in paracetamol drug and tablet formulation, by flow injection analysis with spectrophotometric detection. Talanta 58(6):1301–1310CrossRefPubMedGoogle Scholar
  31. 31.
    Wyszecka-Kaszuba E, Warowna-Grześkiewicz M, Fijalek Z (2003) Determination of 4-aminophenol impurities in multicomponent analgesic preparations by HPLC with amperometric detection. J Pharm Biomed Anal 32(5):1081–1086CrossRefPubMedGoogle Scholar
  32. 32.
    Yin HS, Ma Q, Zhou YL, Ai SY, Zhu LS (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on grapheme-chitosan composite film modified glassy carbon electrode. Electrochim Acta 55(23):7102–7108CrossRefGoogle Scholar
  33. 33.
    Fan Y, Liu JH, Yang CP, Yu M, Liu P (2011) Graphene-polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sensor Actuat B-Chem 157(2):669–674CrossRefGoogle Scholar
  34. 34.
    Neto JRM, Santos WJR, Lima PR, Tanaka SMCN, Tanaka AA, Kubota LT (2011) A hemin-based molecularly imprinted polymer (MIP) grafted onto a glassy carbon electrode as a selective sensor for 4-aminophenol amperometric. Sensor Actuat B-Chem 152(2):220–225CrossRefGoogle Scholar
  35. 35.
    Shiroma LY, Santhiago M, Gobbi AL, Kubota LT (2012) Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device. Anal Chim Acta 725(9):44–50CrossRefPubMedGoogle Scholar
  36. 36.
    Lavanya N, Sudhan N, Kanchana P, Radhakrishnan S, Sekar C (2015) A new strategy for simultaneous determination of 4-aminophenol, uric acid and nitrite based on a graphene/hydroxyapatite composite modified glassy carbon electrode. RSC Adv 5(65):52703–52709CrossRefGoogle Scholar
  37. 37.
    Wang JS, Shi Z, Jin J, Liu Q, Zhang SH (2015) Determination of 4-aminophenol using a glassy carbon electrode modified with a three-dimensionally ordered macroporous film of polycysteine. Microchim Acta 182(3–4):823–829CrossRefGoogle Scholar
  38. 38.
    DeBleye C, Dumont E, Rozet E, Sacré PY, Chavez PF, Netchacovitch L, Piel G, Hubert P, Ziemons E (2013) Determination of 4-aminophenol in a pharmaceutical formulation using surface enhanced Raman scattering: from development to method validation. Talanta 116(22):899–905CrossRefGoogle Scholar
  39. 39.
    Dejaegher B, Bloomfield MS, Smeyers-Verbeke J, Vander Heyden Y (2008) Validation of a fluorimetric assay for 4-aminophenol in paracetamol formulations. Talanta 75(1):258–265CrossRefPubMedGoogle Scholar
  40. 40.
    Zhou L, Gao C, Hu XZ, Xu WJ (2010) One-pot large-scale synthesis of robust ultrafine silica-hybridized CdTe quantum dots. ACS Appl Mater Interfaces 2(4):1211–1219CrossRefPubMedGoogle Scholar
  41. 41.
    Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81(15):6285–6294CrossRefGoogle Scholar
  42. 42.
    Hewa-Kasakarage NN, Gurusinghe NP, Zamkov M (2009) Blue-shifted emission in CdTe/ZnSe heterostructured nanocrystals. J Phys Chem C 113(11):4362–4368CrossRefGoogle Scholar
  43. 43.
    Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. John Wiley & Sons, IncGoogle Scholar
  44. 44.
    Murase N, Yang P (2009) Anomalous photoluminescence in silica-coated semiconductor nanocrystals after heat treatment. Small 5(7):800–803CrossRefPubMedGoogle Scholar
  45. 45.
    Wang LW (2001) Calculating the influence of external charges on the photoluminescence of a CdSe quantum dot. J Phys Chem B 105(12):2360–2364CrossRefGoogle Scholar
  46. 46.
    Liu HL, Liu DR, Fang GZ, Liu FF, Liu CC, Yang YK, Wang S (2013) A novel dual-function molecularly imprinted polymer on CdTe/ZnS quantum dots for highly selective and sensitive determination of ractopamine. Anal Chim Acta 762(2):76–82CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang W, He XW, Li WY, Zhang YK (2012) Thermo-sensitive imprinted polymer coating CdTe quantum dots for target protein specific recognition. Chem Commun 48(2):1757–1759CrossRefGoogle Scholar
  48. 48.
    Xu SF, Lu HZ, Li JH, Song XL, Wang AX, Chen LX, Han SB (2013) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl Mater Interfaces 5(16):8146–8154CrossRefPubMedGoogle Scholar
  49. 49.
    Yang YQ, He XW, Wang YZ, Li WY, Zhang YK (2014) Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin. Biosens Bioelectron 54(8):266–272CrossRefPubMedGoogle Scholar
  50. 50.
    Ren XH, Chen LG (2015) Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens Bioelectron 64:182–188CrossRefPubMedGoogle Scholar
  51. 51.
    Wei FD, Wu YZ, Xu GH, Gao YK, Yang J, Liu LP, Zhou P, Hu Q (2014) Molecularly imprinted polymer based on CdTe@SiO2 quantum dots as a fluorescent sensor for the recognition of norepinephrine. Analyst 139(22):5785–5792CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of PharmacyNanjing Medical UniversityNanjingChina

Personalised recommendations