Skip to main content
Log in

Graphene Quantum Dots Functionalized with 4-Amino-2, 2, 6, 6-Tetramethylpiperidine-N-Oxide as Fluorescence “Turn-ON” Nanosensors

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, we report on the fabrication of simple and rapid graphene quantum dots (GQDs)-based fluorescence “turn-ON” nanoprobes for sensitive and selective detection of ascorbic acid (AA). Pristine GQDs and S and N co-doped-GQDs (SN-GQDs) were functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4-amino-TEMPO, a nitroxide free radical). The nitroxide free radicals efficiently quenched the fluorescence of the GQDs and upon interaction of the nanoconjugates with ascorbic acid, the quenched fluorescence was restored. The linear ranges recorded were 0.5–5.7 μM and 0.1–5.5 μM for GQDs-4-amino-TEMPO and SN-GQDs-4amino-TEMPO nanoprobes, respectively. Limits of detection were found to be 60 nM and 84 nM for SN-GQDS-4-amino-TEMPO and GQDs-4-amino-TEMPO for AA detection, respectively. This novel fluorescence “turn-ON” technique showed to be highly rapid and selective towards AA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lin L, Rong M, Luo F, Chen D, Wang Y, Chen X (2014) Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends Anal Chem 54:83–102

    Article  CAS  Google Scholar 

  2. Ge J, Minhuan L, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Xiangmin M, Pengfei W, Chun-Sing L, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C, Hu R, Yang B (2012) Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv 2:2717–2720

    Article  CAS  Google Scholar 

  4. Lin F, Pei D, He W, Huang Z, Huang Y, Guo X (2012) Electron transfer quenching by nitroxide radicals of the fluorescence of carbon dots. J Mater Chem 22:11801–11807

    Article  CAS  Google Scholar 

  5. Liu CP, TH W, Liu CY, Cheng HJ, Lin SY (2015) Interactions of nitroxide radicals with dendrimer-entrapped Au8-cluster: a fluorescent nanosensor for intracellular imaging of ascorbic acid. J Mater Chem B 3:191–197

    Article  CAS  Google Scholar 

  6. Maurel V, Laferrière M, Billone P, Godin R, Scaiano JC (2006) Free radical sensor based on CdSe quantum dots with added 4-amino-2,2,6,6-Tetramethylpiperidine oxide functionality. J Phys Chem B 110:16353–16358

    Article  CAS  PubMed  Google Scholar 

  7. Ishii K, Kubo K, Sakurada T, Komori K, Sakai Y (2011) Phthalocyanine-based fluorescence probes for detecting ascorbic acid: phthalocyaninatosilicon covalently linked to TEMPO radicals. Chem Commun 47:4932–4934

    Article  CAS  Google Scholar 

  8. Adegoke O, Hosten E, McCleland C, Nyokong T (2012) CdTe quantum dots functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion. Anal Chim Acta 721:154–161

    Article  CAS  PubMed  Google Scholar 

  9. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xied Z, Sun Z Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277

  10. Connell PJ, Gormally C, Pravda M, Guilbault GG (2001) Development of an amperometric L-ascorbic acid (vitamin C) sensor based on electropolymerised aniline for pharmaceutical and food analysis. Anal Chim Acta 431:239–247

    Article  Google Scholar 

  11. Agater IB, Jewsbury RA (1995) Determination of plasma ascorbic acid by HPLC: method and stability studies. Eur J Pharm Sci 3:231–239

    Article  Google Scholar 

  12. Wu T, Guan Y, Ye J (2007) Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chem 100:1573–1579

    Article  CAS  Google Scholar 

  13. Zhang YF, Li BX, Xu CL (2010) Visual detection of ascorbic acid via alkyne-azide click reaction using gold nanoparticles as a colorimetric probe. Analyst 135:1579–1584

    Article  CAS  PubMed  Google Scholar 

  14. GZ H, Guo Y, Xue QM, Shao SJ (2010) A highly selective amperometric sensor for ascorbic acid based on mesopore-rich active carbon-modified pyrolytic graphite electrode. Electrochim Acta 55:2799–2804

    Article  Google Scholar 

  15. Park HW, Alam SM, Lee SH, Karim MM, Wabaidur SM, Kang M, Choi JH (2009) Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles. Luminescence 24:367–371

    CAS  PubMed  Google Scholar 

  16. Liu JJ, Chen ZT, Tang DS, Wang YB, Kang LT, Yao JN (2015) Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid. Sensors Actuators B Chem 212:214–219

    Article  CAS  Google Scholar 

  17. Tshangana C, Nyokong T (2015) The photophysical properties of multi-functional quantum dots-magnetic nanoparticles – indium octacarboxy phthalocyanine nanocomposites. J Fluoresc 25:199–210

    Article  CAS  PubMed  Google Scholar 

  18. Fashina A, Antunes E, Nyokong T (2013) Characterization and photophysical behaviour of phthalocyanines when grafted onto silica nanoparticles. Polyhedron 53:278–285

    Article  CAS  Google Scholar 

  19. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Raid EH, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Report 4:1–9

    Google Scholar 

  20. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Ed 76:12660–11264

    Article  Google Scholar 

  21. Fischer S, Georges J (1996) Fluorescence quantum yields of Rhodamine 6G in ethanol as a function of concentration using lens spectrometry. Chem Phys Lett 260:115–118

    Article  CAS  Google Scholar 

  22. Idowu M, Nyokong T (2009) Interaction of water-soluble CdTe quantum dots with Octacarboxy metallophthalocyanines: a photophysical and photochemical study. J Lumin 129:356–362

    Article  CAS  Google Scholar 

  23. Yuan F, Ding L, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S (2015) Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 7:11727–11733

    Article  CAS  PubMed  Google Scholar 

  24. Achadu OJ, Nyokong T (2016) Interaction of graphene quantum dots with 4-acetamido-2,2,6,6-tetramethylpiperidine-oxyl free radical: A spectroscopic and fluorimetric study. J Fluoresc 26:283–295

    Article  CAS  PubMed  Google Scholar 

  25. Chua CK, Sofer Z, Šimek P, Jankovský O, KlÍmová K, Bakardjieva S, Kučková SH, Pumera M (2015) Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9:2548–2555

    Article  CAS  PubMed  Google Scholar 

  26. Nurunnabi M, Zehedina K, Nafiujjaman M, Dong L, Lee Y-k (2013) Surface Coating of Graphene Quantum Dots Using Mussel-Inspired Polydopamine for Biomedical Optical Imaging. ACS Appl Mater Interfaces 5:8246–8253

    Article  CAS  PubMed  Google Scholar 

  27. Zheng XT, Ananthanarayanan KQ, Luo P, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  CAS  PubMed  Google Scholar 

  28. Hu Y, Zhao G, Lu N, Chen Z, Zhang H, Li H, Shao L, Qu L (2013) Graphene quantum dots-carbon nanotubes hybrid arrays for supercapacitors. Nanotechnology 24:195401

    Article  PubMed  Google Scholar 

  29. Chien C, Li S, Lai W, Yeh Y, Chen H, Chen I, Chen L, Nemoto IS (2012) Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 51:6662–6666

    Article  CAS  Google Scholar 

  30. Dong Y, Lin J, Chen Y, Fu F, Chi Y, Chen G (2014) Graphene quantum dots and graphite nanocrystals in coal. Nanoscale 6:7410–7415

    Article  CAS  PubMed  Google Scholar 

  31. Hoque MN, Basu A, Das G (2014) Fluorescence turn on sensor for sulfate ion in aqueous medium using Tripodal-Cu2+ ensemble. J Fluoresc 24:411–416

    Article  CAS  PubMed  Google Scholar 

  32. Dɑnet AF, Badea M, Aboul-Enein HY (2000) Flow injection system with chemiluminometric detection for enzymatic determination of ascorbic acid. Luminescence 15:305–309

    Article  PubMed  Google Scholar 

  33. WN H, Sun DM, Ma W (2010) Silver doped poly (L-valine) modified glassy carbon electrode for the simultaneous determination of uric acid, ascorbic acid and dopamine. Electroanalysis 22:584–589

    Article  Google Scholar 

  34. Chen YJ, Yan XP (2009) Chemical redox modulation of the surface chemistry of CdTe quantum dots for probing ascorbic acid in biological fluids. Small 5:2012–2018

    Article  CAS  PubMed  Google Scholar 

  35. Wang XX, Wu P, Hou XD, Lv Y (2013) An ascorbic acid sensor based on protein modified Au nanoclusters. Analyst 138:229–233

    Article  CAS  PubMed  Google Scholar 

  36. Sillen A, Engelborghs Y (1998) The correct use of “average” fluorescence parameters. Photochem Photobiol 67(5):475–486

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (UID 62620) as well as Rhodes University/DST Centre for Nanotechnology Innovation, Rhodes University, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Nyokong.

Electronic supplementary material

ESM 1

(DOC 46 kb)

ESM 2

(DOC 25 kb)

ESM 3

(DOC 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achadu, O.J., Britton, J. & Nyokong, T. Graphene Quantum Dots Functionalized with 4-Amino-2, 2, 6, 6-Tetramethylpiperidine-N-Oxide as Fluorescence “Turn-ON” Nanosensors. J Fluoresc 26, 2199–2212 (2016). https://doi.org/10.1007/s10895-016-1916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1916-y

Keywords

Navigation