Journal of Fluorescence

, Volume 26, Issue 6, pp 2151–2163 | Cite as

Synthesis, Structural, DNA Binding and Cleavage Studies of Cu(II) Complexes Containing Benzothiazole Cored Schiff Bases

  • Somapangu Tejaswi
  • Marri Pradeep Kumar
  • Aveli Rambabu
  • Narendrula Vamsikrishna
  • Shivaraj


Novel benzothiazole Schiff bases L1 [1-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl) naphthalen-2-ol], L2 [3-((4,6-difluorobenzo[d]thiazol-2-ylimino) methyl)benzene-1,2-diol], L3 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-5-methoxyphenol], L4 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol] and their binary Cu(II) complexes were synthesized. The structures of all the compounds have been discussed on the basis of elemental analysis, FT-IR, NMR, UV-Visible, ESI-Mass, TGA, ESR, SEM, powder XRD and magnetic moments. Based on the analytical and spectral data a square planar geometry has been assigned to all complexes in which the Schiff bases act as monobasic bidentate ligands, coordinating through the azomethine nitrogen and phenolic oxygen atom. DNA binding ability of these complexes was studied on CT-DNA by using UV-Vis absorption, fluorescence and viscometry. DNA cleavage ability of the complexes was examined on pBR322 DNA by using gel electrophoresis method. All the DNA binding studies reveal that they are good intercalators. The bioefficacy of the ligands and their complexes was examined against the growth of bacteria and fungi in vitro to evaluate their antimicrobial potential. The screening data revealed that the complexes showed more antimicrobial activity than the corresponding free ligands.


Schiff base Cu(II) complex DNA binding DNA cleavage Antimicrobial activity 



We express our sincere thanks to the Head, Department of Chemistry for providing the necessary facilities. We are thankful to the Director, CFRD, Osmania University, Hyderabad, and the Director, IICT, Hyderabad, and the SAIF, IIT Bombay for providing spectral and analytical data. We are also thankful to DST-PURSE, DST-SERB and UGC-UPE (FAR) for providing financial assistance.

Supplementary material

10895_2016_1911_MOESM1_ESM.docx (111 kb)
ESM 1 (DOCX 110 kb)
10895_2016_1911_MOESM2_ESM.docx (55 kb)
ESM 2 (DOCX 55 kb)
10895_2016_1911_MOESM3_ESM.docx (59 kb)
ESM 3 (DOCX 58 kb)
10895_2016_1911_MOESM4_ESM.docx (60 kb)
ESM 4 (DOCX 59 kb)
10895_2016_1911_MOESM5_ESM.docx (63 kb)
ESM 5 (DOCX 63 kb)
10895_2016_1911_MOESM6_ESM.docx (121 kb)
ESM 6 (DOCX 121 kb)
10895_2016_1911_MOESM7_ESM.docx (588 kb)
ESM 7 (DOCX 587 kb)
10895_2016_1911_MOESM8_ESM.docx (153 kb)
ESM 8 (DOCX 153 kb)
10895_2016_1911_MOESM9_ESM.docx (52 kb)
ESM 9 (DOCX 51 kb)
10895_2016_1911_MOESM10_ESM.docx (56 kb)
ESM 10 (DOCX 56 kb)
10895_2016_1911_MOESM11_ESM.docx (92 kb)
ESM 11 (DOCX 92 kb)
10895_2016_1911_MOESM12_ESM.docx (137 kb)
ESM 12 (DOCX 136 kb)
10895_2016_1911_MOESM13_ESM.docx (76 kb)
ESM 13 (DOCX 76 kb)
10895_2016_1911_MOESM14_ESM.docx (88 kb)
ESM 14 (DOCX 87 kb)


  1. 1.
    Song YM, Wu Q, Yang PJ, Luan NN, Wang LF, Liu YM (2006) DNA binding and cleavage activity of Ni(II) complex with all-trans retinoic acid. J Inorg Biochem 100:1685–1691CrossRefPubMedGoogle Scholar
  2. 2.
    Tan C, Liu J, Chen L, Shi S, Ji L (2008) Synthesis, structural characteristics DNA binding properties and cytotoxicity studies of a series of Ru(III) complexes. J Inorg Biochem 102:1644–1653CrossRefPubMedGoogle Scholar
  3. 3.
    Zuber G, Quada JC Jr, Hecht SM (1998) Sequence selective cleavage of a DNA Octanucleotide by chlorinated Bithiazoles and Bleomycins. J Am Chem Soc 120:9368–9369CrossRefGoogle Scholar
  4. 4.
    Hall IH, Peaty NJ, Henry JR, Easmon J, Heinisch G, Purstinger G (1999) Investigations on the Mechanism of Action of the Novel Antitumor Agents 2-Benzothiazolyl, 2-Benzoxazolyl, and 2-Benzimidazolyl Hydrazones Derived from 2-Acetylpyridine. Arch Pharm 332:115–123CrossRefGoogle Scholar
  5. 5.
    Hutchinson I, Bradshaw TD, Matthews CS, Stevens MFG, Westwell AD (2003) Antitumour benzothiazoles. Part 20:3′-Cyano and 3′-Alkynyl-substituted 2-(4′-Aminophenyl)benzothiazoles as new potent and selective analogues. Bioorg Med Chem Lett 13:471–474CrossRefPubMedGoogle Scholar
  6. 6.
    D.M AE-A, Etaiw SEH, Ali EA (2013) Synthesis, spectroscopic, cytotoxic aspects and computational study of N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base and some of its transition metal complexes. J Mol Struct 1048:487–499CrossRefGoogle Scholar
  7. 7.
    Benazzouz A, Boraud T, Dubedat P, Boireau A, Stutzmann JM, Gross C (1995) Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study. Eur J Pharmacol 284:299–307CrossRefPubMedGoogle Scholar
  8. 8.
    Arjunan V, Sakiladevi S, Rani T, Mythili CV, Mohan S (2012) FTIR, FT-Raman, FT-NMR, UV–visible and quantum chemical investigations of 2-amino-4 methylbenzothiazole. Spectrochim Acta A 88:220–231CrossRefGoogle Scholar
  9. 9.
    Ma Y, Cao L, Kawabata T, Yoshino T, Yang B.B, Okada S (1998) Cupric nitrilotriacetate induces oxidative DNA damage and apoptosis in human leukemia HL-60 cells. Free Radic Biol Med 25:568575.Google Scholar
  10. 10.
    Nalawade AM, Nalawade RA, Patange SM, Tase DR (2013) Thiazole Containing Schiffs Bases and Their Transition Metal Complexes. Int Eng Sci Inven 2:1–4Google Scholar
  11. 11.
    Li H, Li J, Chen H, Zhang Y, Huang D (2011) Synthesis and crystal structure of charge transfer complex (CTC) of 2-aminobenzothiazole with its Schiff Base. J Chem Crystallogr 41:1844–1849CrossRefGoogle Scholar
  12. 12.
    Raman N, Selvan A, Sudharsan S (2011) Metallation of ethylenediamine based Schiff base with biologically active Cu(II), Ni(II) and Zn(II) ions: synthesis, spectroscopic characterization, electrochemical behaviour, DNA binding, photonuclease activity and in vitro antimicrobial efficacy. Spectrochim Acta A 79:873–883CrossRefGoogle Scholar
  13. 13.
    Arjmand F, Mohani B, Parveen S (2006) New Dihydro OO'Bis(Salicylidene) 2,2' Aminobenzothiazolyl borate complexes: kinetic and Voltammetric studies of Dimethyltin copper complex with guanine, adenine, and calf thymus DNA. Bioinorg Chem Appl 1 Scholar
  14. 14.
    Rajarajeswari C, Ganeshpandian M, Palaniandavar M, Riyasdeen A, Akbarsha MA (2014) Mixed ligand copper(II) complexes of 1,10-phenanthroline with tridentate phenolate/pyridyl/(benz)imidazolyl Schiff base ligands: covalent vs non-covalent DNA binding, DNA cleavage and cytotoxicity. J Inorg Biochem 140:255–268CrossRefPubMedGoogle Scholar
  15. 15.
    Wu H, Yuan J, Huang X, Kou F, Liu B, Jia F, Wang K, Bai Y (2012) Two zinc(II) and cadmium(II) complexes based on the V-shaped ligand 2,6-bis(2 benzimidazolyl)pyridine: synthesis, crystal structure, DNA-binding properties and antioxidant activities. Inorg Chim Acta 390:12–21CrossRefGoogle Scholar
  16. 16.
    Easmon J, Pürstinger G, Heinisch G, Roth T, Fiebig HH, Holzer W, Jäger W, Jenny M, Hofmann J (2001) Synthesis, cytotoxicity, and antitumor activity of copper(II) and iron(II) complexes of 4 N-Azabicyclo[3.2.2]nonane thiosemicarbazones derived from acyl Diazines. J Med Chem 44:2164–2171CrossRefPubMedGoogle Scholar
  17. 17.
    Tahghighi A (2014) Importance of metal complexes for development of potential leishmanicidal agents. J Organomet Chem 770:51–60CrossRefGoogle Scholar
  18. 18.
    Chityala V K, kumar K S, Ramesh M, Parthasarathy T, Shivaraj (2014) DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds. Hindawi Pub bioinochem and app doi: 10.1155/2014/691260.
  19. 19.
    Kumar MP, Tejaswi S, Rambabu A, Kalalbandi VKA, Shivaraj (2015) Synthesis, crystal structure, DNA binding and cleavage studies of copper(II) complexes with isoxazole Schiff bases. Polyhedron 102:111–120CrossRefGoogle Scholar
  20. 20.
    Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218. doi: 10.1016/s0022-2836(61)80047-8 CrossRefGoogle Scholar
  21. 21.
    Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115:8547–8553. doi: 10.1021/ja00072a004 CrossRefGoogle Scholar
  22. 22.
    Tandon VK, Yadav DB, Singh RV, Vaish M, Chaturvedi AK, Shukla PK (2005) Synthesis and biological evaluation of novel 1,4-naphthoquinone derivatives as antibacterial and antiviral agents. Bioorg Med Chem Lett 15:3463–3466. doi: 10.1016/j.bmcl.2005.04.075 CrossRefPubMedGoogle Scholar
  23. 23.
    Bhunora S, Mugo J, Bhaw-Luximon A, Mapolie S, Van Wyk J, Darkwa J, Nordlander E (2011) The use of Cu and Zn salicylaldimine complexes as catalyst precursors in ring opening polymerization of lactides: ligand effects on polymer characteristics. Appl Organomet Chem 25:133–145CrossRefGoogle Scholar
  24. 24.
    Youssef NS, El-Zahany E, El-Seidy AMA, Caselli A, Fantauzzi S, Cenini S (2009) Synthesis and characterisation of new Schiff base metal complexes and their use as catalysts for olefin cyclopropanation. Inorg Chim Acta 362:2006–2014CrossRefGoogle Scholar
  25. 25.
    Percy GC, Thornton DA (1973) Infrared spectra of N-aryl salicylaldimine complexes substituted in both aryl rings. J Inorg Nucl Chem 35:2319–2327CrossRefGoogle Scholar
  26. 26.
    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, fifth edn. Wiley-Interscience, New YorkGoogle Scholar
  27. 27.
    Bellamy LJ (1980) The Infrared Spectra of Complex Molecules, second edn. Chapmann and Hall, LondonCrossRefGoogle Scholar
  28. 28.
    Cotton FA, Wilkinson G (1972) Advanced Inorganic Chemistry, third edn. Interscience Publisher, New YorkGoogle Scholar
  29. 29.
    Lever ABP (1984) Inorganic Electronic Spectroscopy, second edn. Elsevier, AmsterdamGoogle Scholar
  30. 30.
    Zhou Y, Ye X, Xin F, Xin X (1999) Solid state self-assembly synthesis of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with a bis-Schiff base. Transit Met Chem 24:118–120CrossRefGoogle Scholar
  31. 31.
    Ramesh R, Maheswaran S (2003) Synthesis, spectra, dioxygen affinity and antifungal activity of Ru(III) Schiff base complexes. J Inorg Biochem 96:457–462CrossRefPubMedGoogle Scholar
  32. 32.
    Unver H, Hayvali Z (2010) Synthesis, spectroscopic studies and structures of square-planar nickel(II) and copper(II) complexes derived from 2-{(Z)-[furan-2 ylmethyl]imino]methyl}-6-methoxyphenol. Spectrochim Acta A 75:782–788CrossRefGoogle Scholar
  33. 33.
    Patel RN, Singh N, Shukla KK, Chauhan UK, Nicols -Gutierrez J, Castineiras A (2004) Magnetic, spectroscopic, structural and biological properties of mixed-ligand complexes of copper(II) with N,N,N ,N″,N″-pentamethyldiethylenetriamine and polypyridine ligands. Inorg Chim Acta 357:2469–2476CrossRefGoogle Scholar
  34. 34.
    Kivelson D, Neiman R (1961) ESR studies on the bonding in copper complexes. J Chem Phys 35:149–155CrossRefGoogle Scholar
  35. 35.
    Hathaway BJ, Billing DE (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev 5:143–207CrossRefGoogle Scholar
  36. 36.
    Barton JK, Danishefsky AT, Goldberg JM (1984) Tris(phenanthroline)ruthenium(II): stereoselectivity in binding to DNA. J Am Chem Soc 106:2172–2176CrossRefGoogle Scholar
  37. 37.
    Tysoe SA, Morgan RJ, Baker AD, Strekas TC (1993) Spectroscopic investigation of differential binding modes of DELTA and LAMBDA.-Ru(bpy)2(ppz)2 with calf thymus DNA. J Phys Chem 97:1707–1711CrossRefGoogle Scholar
  38. 38.
    Liu HK, Sadler PJ (2011) Metal complexes as DNA intercalators. Acc Chem Res 44:349–359CrossRefPubMedGoogle Scholar
  39. 39.
    Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc 111:3051–3058CrossRefGoogle Scholar
  40. 40.
    Li TR, Yang ZY, Wang BD, Qin DD (2008) Synthesis, characterization, antioxidant activity and DNA-binding studies of two rare earth(III) complexes with naringenin-2-hydroxy benzoyl hydrazone ligand. Eur J Med Chem 43:1688–1695CrossRefPubMedGoogle Scholar
  41. 41.
    Sampath K, Sathiyaraj S, Jayabalakrishnan C (2013) DNA binding, DNA cleavage, antioxidant and cytotoxicity studies on ruthenium(II) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones. Spectrochim Acta A 105:582–592CrossRefGoogle Scholar
  42. 42.
    Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13:269–282CrossRefPubMedGoogle Scholar
  43. 43.
    Meyer-Almes FJ, Porschke D (1993) Mechanism of intercalation into the DNA double helix by ethidium. Biochemistry 32:4246–4253CrossRefPubMedGoogle Scholar
  44. 44.
    Lepecq JB, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids: physical-chemical characterization. J Mol Biol 27:87–106CrossRefPubMedGoogle Scholar
  45. 45.
    Chen J, Wang X, Chao Y, Zhu JH, Zhu YG, Li YZ, Xu Q, Guo ZJ (2007) A Trinuclear copper(II) complex of 2,4,6-Tris(di-2-pyridylamine)-1,3,5-triazine shows prominent DNA cleavage activity. Inorg Chem 46:3306–3312. doi: 10.1021/ic0614162 CrossRefPubMedGoogle Scholar
  46. 46.
    Tarui M, Doi M, Ishida T, Inoue M, Nakaike S, Kitamura K (1994) DNA-binding characterization of a novel anti-tumour benzo[a]phenazine derivative NC-182: spectroscopic and viscometric studies. Biochem J 304:271–279CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Guo H, Lu J, Ruan Z, Zhang Y, Liu Y, Zang L, Jiang J, Huang J (2012) Synthesis, DNA-binding, cytotoxicity, and cleavage studies of unsymmetrical oxovanadium complexes. J Coord Chem 65:191–204CrossRefGoogle Scholar
  48. 48.
    Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry 32:2573–2584CrossRefPubMedGoogle Scholar
  49. 49.
    Zhen X S, Ye H B, Zhang L Q, Liu G J, Li H, Ji N L (1998) Synthesis characterization and effect of ligand planarity of [Ru(bipy)2 L)2+ on DNA binding affinity.Google Scholar
  50. 50.
    Sigman DS (1986) Nuclease activity of 1,10-phenanthroline-copper ion, nuclease activity of 1,10-phenanthroline-copper ion. Acc Chem Res 19:180–186CrossRefGoogle Scholar
  51. 51.
    Belai S, Landreau A, Djebbar S, Benali-Baitich O, Bouet G, Bouchara JP (2008) Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N′-O-phenylenebis(salicylideneimine). J Inorg Biochem 102:63–69CrossRefGoogle Scholar
  52. 52.
    Tweedy BG (1964) Possible mechanism for reduction of elemental sulfur by Monilinia fructicola. Phytopathology 55:910–914Google Scholar
  53. 53.
    Sharma AK, Chandra S (2011) Complexation of nitrogen and Sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: synthesis, spectroscopic and antipathogenic studies. Spectrochim Acta A 78:337–342CrossRefGoogle Scholar
  54. 54.
    Chohan ZH (2004) Synthesis and biological properties of Cu(II) complexes with 1,1′-Disubstituted Ferrocenes. Synth React Inorg met Org Chem 34:833–846CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Somapangu Tejaswi
    • 1
  • Marri Pradeep Kumar
    • 1
  • Aveli Rambabu
    • 1
  • Narendrula Vamsikrishna
    • 1
  • Shivaraj
    • 1
  1. 1.Department of ChemistryOsmania University, HyderabadTelanganaIndia

Personalised recommendations