Advertisement

Journal of Fluorescence

, Volume 26, Issue 6, pp 2063–2077 | Cite as

Indole-Based NLOphoric Donor-π-Acceptor Styryl Dyes: Synthesis, Spectral Properties and Computational Studies

  • Santosh Chemate
  • Nagaiyan Sekar
ORIGINAL ARTICLE

Abstract

Donor-π- acceptor styryl chromophores based on indole core were synthesized by Knoevenagel condensation of N-ethyl indole-3-carbaldehyde and different active methylene compounds. The absorption and emission properties of these dyes in different solvents were studied. The dyes displayed a broad absorption maximum in the UV and visible region between 397 and 469 nm with FWHM, 50 to 75 nm. Due to the extended π – conjugated systems this styryl chromophores shows strong intramolecular charge transfer characteristics. The dyes showed solid state emission and emission in solid state was red shifted as compared to their emission in less polar solvents. Density Functional Theory [B3LYP/6–311 + G(d)] computations were used to correlate the structural, molecular, electronic and photo physical parameters of styryl dye with experimental study. Synthesized dyes were confirmed by using FT-IR, 1H NMR, 13C NMR and HRMS spectral analysis.

Keywords

Indole-3-carbaldehyde Styryl Solid state fluorescence DFT 

Notes

Acknowledgments

Santosh Chemate (JRF/SRF) is thankful for fellowship from the Principal Scientific Adviser (PSA), Government of India.

Supplementary material

10895_2016_1901_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1104 kb)

References

  1. 1.
    Matsui M, Ito A, Kotani M, et al. (2009) Dyes and pigments the use of indoline dyes in a zinc oxide dye-sensitized solar cell. Dyes Pigments 80:233–238. doi: 10.1016/j.dyepig.2008.07.010 CrossRefGoogle Scholar
  2. 2.
    Yu X, Ci Z, Liu T, et al. (2014) Influence of different electron acceptors in organic sensitizers on the performance of dye-sensitized solar cells. Dyes Pigments 102:126–132. doi: 10.1016/j.dyepig.2013.10.045 CrossRefGoogle Scholar
  3. 3.
    Pommeret S, Gustavsson T, Naskrecki R, et al. (1995) Femtosecond absorption and emission spectroscopy of the DCM laser dye. J Mol Liq 64:101–112. doi: 10.1016/0167-7322(95)92824-U CrossRefGoogle Scholar
  4. 4.
    Shettigar S, Umesh G, Poornesh P, et al. (2009) Dyes and pigments the third-order nonlinear optical properties of novel styryl dyes. Dyes Pigments 83:207–210. doi: 10.1016/j.dyepig.2009.04.009 CrossRefGoogle Scholar
  5. 5.
    Huang JY, Lewis a, Loew L (1988) Nonlinear optical properties of potential sensitive styryl dyes. Biophys J 53:665–670. doi: 10.1016/S0006–3495(88)83147–3 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jha BN, Banerji JC (1985) Chromophoric chain β-aryl-substituted styryl cyanines: effect of substituents on visible absorption spectra and photosensitisation properties. Dyes Pigments 6:213–226. doi: 10.1016/0143-7208(85)80018-8 CrossRefGoogle Scholar
  7. 7.
    Hagberg DP, Yum JH, Lee H, et al. (2008) Novel near-infrared cyanine dyes for fluorescence imaging in biological systems. J Am Chem Soc 130:6259–6266. doi: 10.1021/ja800066y CrossRefPubMedGoogle Scholar
  8. 8.
    Li Q, Lin G-L, Peng B-X, Li Z-X (1998) Synthesis, characterization and photographic properties of some new styryl cyanine dyes. Dyes Pigments 38:211–218. doi: 10.1016/S0143–7208(97)00088–0 CrossRefGoogle Scholar
  9. 9.
    Lee CC, Hu AT (2003) Synthesis and optical recording properties of some novel styryl dyes for DVD-R. Dyes Pigments 59:63–69. doi: 10.1016/S0143-7208(03)00098-6 CrossRefGoogle Scholar
  10. 10.
    Yashchuk VM, Yarmoluk SM, Kudrya VY, et al. (2008) Optical Biomedical Diagnostics: Sensors with Optical Response Based on Two-Photon Excited Luminescent Dyes for Biomolecules Detection. Adv Opt Technol 2008:1–11. doi: 10.1155/2008/908246 CrossRefGoogle Scholar
  11. 11.
    Park KH, Lee CJ, Song D, et al. (2001) Optical recording properties of styryl derivatives for digital versatile disc-recordable (DVD-R). Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 370:165–168. doi: 10.1080/10587250108030062 CrossRefGoogle Scholar
  12. 12.
    Sokołowska J, Podsiadły R, Stoczkiewicz J (2008) Styryl dyes as new photoinitiators for free radical polymerization. Dyes Pigments 77:510–514. doi: 10.1016/j.dyepig.2006.11.011 CrossRefGoogle Scholar
  13. 13.
    Haidekker M, Ling T, Anglo M, et al. (2001) New fluorescent probes for the measurement of cell membrane viscosity. Chem Biol 8:123–131. doi: 10.1016/S1074-5521(00)90061-9 CrossRefPubMedGoogle Scholar
  14. 14.
    Metsov S, Simov D, Stoyanov S, Nikolov P (1990) Photophysical characteristics of some 2-styrylindolium dyes. Dyes Pigments 13:11–19. doi: 10.1016/0143-7208(90)80009-E CrossRefGoogle Scholar
  15. 15.
    Kim SD, Park EJ (2001) Relation between chemical structure of yellow disperse dyes and their lightfastness. Fibers Polym 2:159–163. doi: 10.1007/BF02875330 CrossRefGoogle Scholar
  16. 16.
    Chung S-J, Zheng S, Odani T, et al. (2006) Extended squaraine dyes with large two-photon absorption cross-sections. J Am Chem Soc 128:14444–14445. doi: 10.1021/ja065556m CrossRefPubMedGoogle Scholar
  17. 17.
    Lee H-S, Kim S-K, Lee W-J, et al. (2001) Synthesis and properties of organic light-emitting diodes using new emissive materials. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 370:39–42. doi: 10.1080/10587250108030034 CrossRefGoogle Scholar
  18. 18.
    Fei X, Gu Y, Li C, et al. (2013) Synthesis and spectra of a kind of novel longer-wavelength benzoxazole indole styryl cyanine dye with a carbazole-bridged chain. J Fluoresc 23:221–226. doi: 10.1007/s10895-012-1137-y CrossRefPubMedGoogle Scholar
  19. 19.
    Babür B, Seferoğlu N, Aktan E, et al. (2014) Phenylazoindole dyes 2: the molecular structure characterizations of new phenylazo indoles derived from 1,2-dimethylindole. Dyes Pigments 103:62–70. doi: 10.1016/j.dyepig.2013.11.019 CrossRefGoogle Scholar
  20. 20.
    Greaves A, Daubresse N (2009) Thiol/disulfide indole-derived, styryl dye, dye composition comprising said dye, for lightening keratin materials using this dye. WO2009037325 A2Google Scholar
  21. 21.
    Application F, Data P (2010) ( 12 ) United States Patent. 2:Google Scholar
  22. 22.
    Mitschke U, Bäuerle P (2000) The electroluminescence of organic materials. J Mater Chem 10:1471–1507. doi: 10.1039/a908713c CrossRefGoogle Scholar
  23. 23.
    Chen C-T (2004) Evolution of red organic light-emitting diodes: materials and devices. Chem Mater 16:4389–4400. doi: 10.1021/cm049679m CrossRefGoogle Scholar
  24. 24.
    D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater 16:1585–1595. doi: 10.1002/adma.200400684 CrossRefGoogle Scholar
  25. 25.
    Song Y, Di C, Yang X, et al. (2006) A cyclic triphenylamine dimer for organic field-effect transistors with high performance. J Am Chem Soc 128:15940–15941. doi: 10.1021/ja064726s CrossRefPubMedGoogle Scholar
  26. 26.
    De S, Das S, Girigoswami A (2005) Environmental effects on the aggregation of some xanthene dyes used in lasers. Spectrochim Acta A Mol Biomol Spectrosc 61:1821–1833. doi: 10.1016/j.saa.2004.06.054 CrossRefPubMedGoogle Scholar
  27. 27.
    Liao L, Dai L, Smith A, et al. (2007) Photovoltaic-active Dithienosilole-containing polymers. Macromolecules 40:9406–9412. doi: 10.1021/ma071825x CrossRefGoogle Scholar
  28. 28.
    Asefa A, Singh AK (2009) A fluorescence study of novel styrylindoles in homogenous and microhetrogeneous media. J Fluoresc 19:921–930. doi: 10.1007/s10895-009-0525-4 CrossRefPubMedGoogle Scholar
  29. 29.
    Asefa A, Singh AK (2010) Fluorescence emission enhancement in substituted 3-styrylindoles in the solid state. J Lumin 130:24–28. doi: 10.1016/j.jlumin.2009.07.016 CrossRefGoogle Scholar
  30. 30.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422. doi: 10.1021/cr068102g CrossRefPubMedGoogle Scholar
  31. 31.
    Li Q, Lee JS, Ha C, et al. (2004) Solid-phase synthesis of styryl dyes and their application as amyloid sensors. Angew Chem Int Ed 43:6331–6335. doi: 10.1002/anie.200461600 CrossRefGoogle Scholar
  32. 32.
    Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361. doi: 10.1039/c1cs15113d CrossRefPubMedGoogle Scholar
  33. 33.
    Wu Q, Peng Q, Niu Y, et al. (2012) Theoretical insights into the aggregation-induced emission by hydrogen bonding: a QM/MM study. J Phys Chem A 116:3881–3888. doi: 10.1021/jp3002367 CrossRefPubMedGoogle Scholar
  34. 34.
    Wang B, Qian Y (2013) Synthesis and efficient solid-state emission of conjugated donor–acceptor–donor triphenylamine chromophores. New J Chem 37:1402. doi: 10.1039/c3nj41115j CrossRefGoogle Scholar
  35. 35.
    Rao KV, Datta KKR, Eswaramoorthy M, George SJ (2013) Highly pure solid-state white-light emission from solution-processable soft-hybrids. Adv Mater 25:1713–1718. doi: 10.1002/adma.201204407 CrossRefPubMedGoogle Scholar
  36. 36.
    Matsui M, Ooiwa K, Okada A, et al. (2013) Dyes and pigments solid-state fl uorescence of pyridinium styryl dyes. Dyes Pigments 99:916–923. doi: 10.1016/j.dyepig.2013.07.026 CrossRefGoogle Scholar
  37. 37.
    Gupta VD, Tathe AB, Padalkar VS, et al. (2013) Red emitting solid state fluorescent triphenylamine dyes: synthesis, photo-physical property and DFT study. Dyes Pigments 97:429–439. doi: 10.1016/j.dyepig.2012.12.024 CrossRefGoogle Scholar
  38. 38.
    Wang Q, Liu H, Lu H, et al. (2013) Synthesis, characterization and solid-state emission properties of arylsilyl-substituted pyrene derivatives. Dyes Pigments 99:771–778. doi: 10.1016/j.dyepig.2013.07.003 CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09, Revision C.01. Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  40. 40.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032. doi: 10.1063/1.474659 CrossRefGoogle Scholar
  41. 41.
    Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346. doi: 10.1063/1.469408 CrossRefGoogle Scholar
  42. 42.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372. doi: 10.1063/1.464304 CrossRefGoogle Scholar
  43. 43.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  44. 44.
    Meech SR, Phillips D (1983) Photophysics of some common fluorescence standards. J Photochem 23:193–217. doi: 10.1016/0047-2670(83)80061-6 CrossRefGoogle Scholar
  45. 45.
    Saroj MK, Sharma N, Rastogi RC (2011) Solvent effect profiles of absorbance and fluorescence spectra of some indole based chalcones. J Fluoresc 21:2213–2227. doi: 10.1007/s10895-011-0926-z CrossRefPubMedGoogle Scholar
  46. 46.
    Xu H, Fan L-L (2011) Antifungal agents. Part 4: synthesis and antifungal activities of novel indole[1,2-c]-1,2,4-benzotriazine derivatives against phytopathogenic fungi in vitro. Eur J Med Chem 46:364–369. doi: 10.1016/j.ejmech.2010.10.022 CrossRefPubMedGoogle Scholar
  47. 47.
    Rajagopal B, Chou CH, Chung CC, Lin PC (2014) Synthesis of substituted 3-indolylimines and indole-3-carboxaldehydes by rhodium(II)-catalyzed annulation. Org Lett 16:3752–3755. doi: 10.1021/ol501618z CrossRefPubMedGoogle Scholar
  48. 48.
    Ghanadzadeh Gilani A, Moghadam M, Zakerhamidi MS (2012) Solvatochromism of Nile red in anisotropic media. Dyes Pigments 92:1052–1057. doi: 10.1016/j.dyepig.2011.07.018 CrossRefGoogle Scholar
  49. 49.
    Hermant RM, Bakker NAC, Scherer T, et al. (1990) Systematic study of a series of highly fluorescent rod-shaped donor-acceptor systems. J Am Chem Soc 112:1214–1221. doi: 10.1021/ja00159a050 CrossRefGoogle Scholar
  50. 50.
    Ravi M, Samanta A, Radhakrishnan TP (1994) Excited state dipole moments from an efficient analysis of Solvatochromic stokes shift data. J Phys Chem 98:9133–9136. doi: 10.1021/j100088a007 CrossRefGoogle Scholar
  51. 51.
    Lippert E (1957) Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für Phys Chemie 61:962–975. doi: 10.1002/bbpc.19570610819 Google Scholar
  52. 52.
    Mataga N (1963) Solvent effects on the absorption and fluorescence spectra of Naphthylamines and isomeric Aminobenzoic acids. Bull Chem Soc Jpn 36:654–662. doi: 10.1246/bcsj.36.654 CrossRefGoogle Scholar
  53. 53.
    Mataga N, Kaifu Y, Koizumi M (1955) The solvent effect on fluorescence spectrum, change of solute-solvent interaction during the lifetime of excited solute molecule. Bull Chem Soc Jpn 28:690–691. doi: 10.1246/bcsj.28.690 CrossRefGoogle Scholar
  54. 54.
    Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull Chem Soc Jpn 29:465–470. doi: 10.1246/bcsj.29.465 CrossRefGoogle Scholar
  55. 55.
    Christian Reichardt Solvents and Solvent Effects in Organic Chemistry. Third, Upd:Wiley VCH Verlag GmbH & Co. KGaA, Weinheim.Google Scholar
  56. 56.
    Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358. doi: 10.1021/cr00032a005 CrossRefGoogle Scholar
  57. 57.
    Ravi M, Soujanya T, Samanta A, Radhakrishnan TP (1995) Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, E N T. J Chem Soc Faraday Trans 91:2739. doi: 10.1039/ft9959102739 CrossRefGoogle Scholar
  58. 58.
    Kumar S, Rao V, Rastogi R (2001) Excited-state dipole moments of some hydroxycoumarin dyes using an efficient solvatochromic method based on the solvent polarity parameter, ETN. Spectrochim Acta Part A Mol Biomol Spectrosc 57:41–47. doi: 10.1016/S1386–1425(00)00330–9 CrossRefGoogle Scholar
  59. 59.
    Masternak A, Wenska G, Milecki J, et al. (2005) Solvatochromism of a novel betaine dye derived from purine. J Phys Chem A 109:759–766. doi: 10.1021/jp047098e CrossRefPubMedGoogle Scholar
  60. 60.
    Nemkovich NA, Pivovarenko VG, Baumann W, et al. (2005) Dipole moments of 4′-aminoflavonol fluorescent probes in different solvents. J Fluoresc 15:29–36. doi: 10.1007/s10895-005-0210-1 CrossRefPubMedGoogle Scholar
  61. 61.
    Aaron JJ, Maafi M, Kersebet C, et al. (1996) A solvatochromic study of new benzo[a]phenothiazines for the determination of dipole moments and specific solute-solvent interactions in the first excited singlet state. J Photochem Photobiol A Chem 101:127–136. doi: 10.1016/S1010-6030(96)04442-5 CrossRefGoogle Scholar
  62. 62.
    Harbison GS (2002) The electric dipole polarity of the ground and low-lying metastable excited states of NF. J Am Chem Soc 124:366–367. doi: 10.1021/ja0159261 CrossRefPubMedGoogle Scholar
  63. 63.
    Raikar US, Renuka CG, Nadaf YF, et al. (2006) Rotational diffusion and solvatochromic correlation of coumarin 6 laser dye. J Fluoresc 16:847–854. doi: 10.1007/s10895-006-0126-4 CrossRefPubMedGoogle Scholar
  64. 64.
    Nadaf YF, Mulimani BG, Gopal M, Inamdar SR (2004) Ground and excited state dipole moments of some exalite UV laser dyes from solvatochromic method using solvent polarity parameters. J Mol Struct THEOCHEM 678:177–181. doi: 10.1016/j.theochem.2004.01.049 CrossRefGoogle Scholar
  65. 65.
    Józefowicz M, Heldt JR (2007) Dipole moments studies of fluorenone and 4-hydroxyfluorenone. Spectrochim Acta Part A Mol Biomol Spectrosc 67:316–320. doi: 10.1016/j.saa.2006.07.019 CrossRefGoogle Scholar
  66. 66.
    Biradar DS, Siddlingeshwar B, Hanagodimath SM (2008) Estimation of ground and excited state dipole moments of some laser dyes. J Mol Struct 875:108–112. doi: 10.1016/j.molstruc.2007.04.005 CrossRefGoogle Scholar
  67. 67.
    Turro NJ (1978) Modern Molecular Photochemistry. Benjamin-Cummings, New YorkGoogle Scholar
  68. 68.
    Lanke SK, Sekar N (2015) Rigid Coumarins: a Complete DFT, TD-DFT and Non Linear Optical Property Study. J Fluoresc. doi: 10.1007/s10895–015–1638-6 Google Scholar
  69. 69.
    Telore RD, Satam M a, Sekar N (2015) NLOphoric studies in thiazole containing symmetrical push – pull fluorophores – Combined experimental and DFT approach. Opt Mater (Amst) 48:271–280. doi: 10.1016/j.optmat.2015.08.006 CrossRefGoogle Scholar
  70. 70.
    Coe BJ, Harris JA, Asselberghs I, et al. (2002) Quadratic nonlinear optical properties ofN-aryl Stilbazolium dyes. Adv Funct Mater 12:110–116. doi: 10.1002/1616–3028(20020201)12:2<110::AID-ADFM110>3.0.CO;2-Y
  71. 71.
    Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. doi: 10.1063/1.1674902 CrossRefGoogle Scholar
  72. 72.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. doi: 10.1063/1.1677527 CrossRefGoogle Scholar
  73. 73.
    Lanke SK, Sekar N (2016) Aggregation induced emissive carbazole-based push pull NLOphores: synthesis, photophysical properties and DFT studies. Dyes Pigments 124:82–92. doi: 10.1016/j.dyepig.2015.09.013 CrossRefGoogle Scholar
  74. 74.
    Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126:1977–1979. doi: 10.1103/PhysRev.126.1977 CrossRefGoogle Scholar
  75. 75.
    Vidya S, Ravikumar C, Hubert Joe I, et al. (2011) Vibrational spectra and structural studies of nonlinear optical crystal ammonium D, L-tartrate: a density functional theoretical approach. J Raman Spectrosc 42:676–684. doi: 10.1002/jrs.2743 CrossRefGoogle Scholar
  76. 76.
    Telore RD, Satam M a, Sekar N (2015) Push–pull fluorophores with viscosity dependent and aggregation induced emissions insensitive to polarity. Dyes Pigments 122:359–367. doi: 10.1016/j.dyepig.2015.07.017 CrossRefGoogle Scholar
  77. 77.
    Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446. doi: 10.1063/1.434888
  78. 78.
    De PR (1982) Nonlinear-Optical Properties. Phys Rev A 26:2016–1027CrossRefGoogle Scholar
  79. 79.
    Kwon OP, Jazbinsek M, Seo JI, et al. (2010) First hyperpolarizability orientation in asymmetric pyrrole-based polyene chromophores. Dyes Pigments 85:162–170. doi: 10.1016/j.dyepig.2009.10.019 CrossRefGoogle Scholar
  80. 80.
    Weaver CS, Smith SW, Hyndman RD, et al. (1991) 0.028. Science 252:103–106CrossRefGoogle Scholar
  81. 81.
    Cheng L-T, Tam W, Stevenson SH, et al. (1991) Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J Phys Chem 95:10631–10643. doi: 10.1021/j100179a026 CrossRefGoogle Scholar
  82. 82.
    Dirk CW, Cheng L-T, Kuzyk MG (1992) A simplified three-level model describing the molecular third-order nonlinear optical susceptibility. Int J Quantum Chem 43:27–36. doi: 10.1002/qua.560430106 CrossRefGoogle Scholar
  83. 83.
    Kuzyk MG, Dirk CW (1990) Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility. Phys Rev A 41:5098–5109. doi: 10.1103/PhysRevA.41.5098 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Dyestuff TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations