Advertisement

Journal of Fluorescence

, Volume 26, Issue 6, pp 1967–1974 | Cite as

A New Sensitive and Selective Off-On Fluorescent Zn2+ Chemosensor Based on 3,3′,5,5′-Tetraphenylsubstituted Dipyrromethene

  • Natalia A. Bumagina
  • Elena V. Antina
  • Anna Yu. Nikonova
  • Mikhail B. Berezin
  • Alexander A. Ksenofontov
  • Anatoly I. Vyugin
Article

Abstract

3,3′,5,5′-Tetraphenyl-2,2′-dipyrromethene was described as a highly sensitive and selective Off-on fluorescent colorimetric chemosensor for Zn2+ based on the chelation-enhanced fluorescence (CHEF) effect. The reaction of dipyrromethene ligand with Zn2+ induces the formation of the [ZnL2] complex, which exhibits the increasing fluorescence in 120 fold compared with ligand in the propanol-1/cyclohexane (1:30) binary mixture. The Zn2+ detection limit was 1.4 × 10−7 М. The UV-Vis and fluorescence spectroscopic studies demonstrated that the dipyrromethene sensor was highly selective toward Zn2+ cations over other metal ions (Na+, Mg2+, Co2+, Ni2+, Fe3+, Cu2+, Mn2+, Cd2+ and Pb2+), excluding Hg2+.

Keywords

Dipyrromethene Fluorescent chemosensor Zinc ion Selectivity Theoretical calculation 

References

  1. 1.
    Anslyn EV, Wang B (2011) Chemosensors: principles, strategies, and applications/ Wiley series in drug discovery and development series. John Wiley & Sons, New York, 544 pGoogle Scholar
  2. 2.
    Fluorescent Chemosensors for Ion and Molecule Recognition (1993) (Ed. A.W. Czarnik) ACS Symposium Series 358, American Chemical Society, Washington, DCGoogle Scholar
  3. 3.
    Bren VA (2001) Fluorescent and photochromic chemosensors. Russ Chem Rev 70:1152–1174CrossRefGoogle Scholar
  4. 4.
    Optical Sensors and Switches (2001) (Eds. V. Ramamurthy, K.S. Schanze), Dekker: New YorkGoogle Scholar
  5. 5.
    Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205(1):3–40CrossRefGoogle Scholar
  6. 6.
    Panchenko OA, Fedorova OA, Fedorov YV (2014) Fluorescent and colorimetric chemosensors for cations based on 1,8-naphthalimide derivatives: design principles and optical signalling mechanisms. Russ Chem Rev 83(2):155–182CrossRefGoogle Scholar
  7. 7.
    Ding Y, Tang Y, Zhu W, Xie Y (2015) Fluorescent and colorimetric ion probes based on conjugated oligopyrroles. Chem Soc Rev 44:1101–1112CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang D, Zou R, Wang M, Chai M, Wang X, Ye Y, Zhao Y (2013) A Novel Series Colorimetric and Off–On Fluorescent Chemosensors for Fe3+ Based on Rhodamine B Derivative. J Fluorescence 23(1):13–19CrossRefGoogle Scholar
  9. 9.
    Xue L, Liu C, Jiang H (2009) Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Org Lett 11(7):1655–1658CrossRefPubMedGoogle Scholar
  10. 10.
    Li Z, Zhang L, Wang L, Guo Y, Cai L, Yu M, Wie L (2011) Highly sensitive and selective fluorescent sensor for Zn2+/Cu2+ and new approach for sensing Cu2+ by central metal displacement. Chem Commun 47:5798–5800CrossRefGoogle Scholar
  11. 11.
    Liu Y, Han M, Zhang H-Y, Yang L-X, Jiang W (2008) A proton-triggered ON − OFF − ON fluorescent chemosensor for Mg(II) via twisted intramolecular charge transfer. Org Lett 10(13):2873–2876CrossRefPubMedGoogle Scholar
  12. 12.
    Nath S, Maitra U (2006) A simple and general strategy for the design of fluorescent cation sensor beads. Org Lett 8(15):3239–3242CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou X, Su F, Tian Y, Youngbull C, Johnson RH, Meldrum DR (2011) A new highly selective fluorescent K+ sensor. J Am Chem Soc 133(46):18530–18533CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ciupa A, Mahon MF, De Bank PA, Caggiano L (2012) Simple pyrazoline and pyrazole “turn on” fluorescent sensors selective for Cd2+ and Zn2+ in MeCN. Org Biomol Chem 10:8753–8757CrossRefPubMedGoogle Scholar
  15. 15.
    Liu Y, Zhang N, Chen Y, Wang L-H (2007) Fluorescence sensing and binding behavior of Aminobenzenesulfonamidoquinolino-β-cyclodextrin to Zn2+. Org Lett 9(2):315–318CrossRefPubMedGoogle Scholar
  16. 16.
    Zhao C, Zhang Y, Feng P, Cao J (2012) Development of a borondipyrromethene-based Zn2+ fluorescent probe: solvent effects on modulation sensing ability. Dalton Trans 41:831–838CrossRefPubMedGoogle Scholar
  17. 17.
    Wu Y, Peng X, Guo B, Fan J, Zhang Z, Wang J, Cui A, Gao Y (2005) Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(II) in living cells. Org Biomol Chem 3:1387–1392CrossRefPubMedGoogle Scholar
  18. 18.
    Malval J-P, Leray I, Valeur B (2005) A highly selective fluorescent molecular sensor for potassium based on a calix[4]bisazacrown bearing boron-dipyrromethene fluorophores. New J Chem 29:1089–1094CrossRefGoogle Scholar
  19. 19.
    Dodani SC, He Q, Chang CJ (2009) A Turn-On Fluorescent Sensor for Detecting Nickel in Living Cells. J Am Chem Soc 131(50):18020–18021CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baudron SA (2013) Luminescent dipyrrin based metal complexes. Dalton Trans 42:7498–7509CrossRefPubMedGoogle Scholar
  21. 21.
    Filatov MA, Lebedev AY, Mukhin SN, Vinogradov SA, Cheprakov AV (2010) π-extended dipyrrins capable of highly fluorogenic complexation with metal ions. J Am Chem Soc 132(28):9552–9554CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sutton JM, Rogerson E, Wilson CJ, Sparke AE, Archibald SJ, Boyle RW (2004) Synthesis and structural characterisation of novel bimetallic dipyrromethene complexes: rotational locking of the 5-aryl group. Chem Commun:1328–1329Google Scholar
  23. 23.
    Song H, Rajendiran S, Koo E, Min BK, Jeong SK, Thangadurai TD, Yoon S (2012) Fluorescence enhancement of N2O2-type dipyrrin ligand in two step responding to zinc(II) ion. J. Luminescence 132(11):3089–3092CrossRefGoogle Scholar
  24. 24.
    Sakamoto N, Ikeda C, Yamamura M, Nabeshima T (2011) Structural interconversion and regulation of optical properties of stable Hypercoordinate Dipyrrin − Silicon complexes. J Am Chem Soc 133(13):4726–4729CrossRefPubMedGoogle Scholar
  25. 25.
    Ikeda C, Ueda S, Nabeshima T (2009) Aluminium complexes of N2O2-type dipyrrins: the first hetero-multinuclear complexes of metallo-dipyrrins with high fluorescencequantum yields. Chem Commun:2544–2546Google Scholar
  26. 26.
    Sakamoto R, Kusaka Sh, Hayashi M, Nishikawa M, Nishihara H (2013) Coordination programming of Photofunctional molecules. Molecules 18(4): 4090–4119Google Scholar
  27. 27.
    Ding Y, Xie Y, Li X, Hill JP, Zhang W, Zhu W (2011) Selective and sensitive “turn-on” fluorescent Zn2+ sensors based on di- and tripyrrins with readily modulated emission wavelengths. Chem Commun 47:5431–5433CrossRefGoogle Scholar
  28. 28.
    Mei Y, Bentley PA (2006) A ratiometric fluorescent sensor for Zn2+ based on internal charge transfer (ICT. Bioorganic and Medicinal Chemistry Letters 16(12):3131–3134CrossRefPubMedGoogle Scholar
  29. 29.
    Ding Y, Li T, Li X, Zhu W, Xie Y (2013) From nonconjugation to conjugation: novel meso-OH substituted dipyrromethanes as fluorescence turn-on Zn2+ probes. Org Biomol Chem 11:2685–2692CrossRefPubMedGoogle Scholar
  30. 30.
    Ding Y, Li X, Li T, Zhu W, Xie Y (2013) α-Monoacylated and α,α′- and α,β′-Diacylated dipyrrins as highly sensitive fluorescence “turn-on” Zn2+ probes. J Org Chem 78(11): 5328–5338Google Scholar
  31. 31.
    Mei Y, Frederickson CJ, Giblin LJ, Weiss JH, Medvedeva Y, Bentley PA (2011) Sensitive and selective detection of zinc ions in neuronal vesicles using PYDPY1, a simple turn-on dipyrrin. Chem Commun 47:7107–7109CrossRefGoogle Scholar
  32. 32.
    Tang Y, Ding Y, Li X, Agren H, Li T, Zhang W, Xie Y (2015) Acylation of dipyrromethanes at the α and β positions and further development of fluorescent Zn2+ probes. Sensors Actuators B 206:291–302CrossRefGoogle Scholar
  33. 33.
    Dudina NA, Nikonova AY, Antina EV, Berezin MB, Vyugin AI (2014) Synthesis, spectral-luminescent properties, and Photostability of Zn(II) complexes with dipyrrins modified by the periphery and meso-spacer. Chem Heterocycl Compd 49(12):1740–1747CrossRefGoogle Scholar
  34. 34.
    Nikonova AY, Kuznetsova RT, Aksenova YV, Tel’minov EN, Maier GV, Dudina NA, Nuraneeva EN, Antina EV (2016) Optical Properties of Zinc(II) and Boron(III) Dipyrrinates with Different Structures. Optics and Spectroscopy 120(3):395–402CrossRefGoogle Scholar
  35. 35.
    Rogers MA (1943) 2:4-Diarylpyrroles. Part II. Methines. J Chem Soc 596Google Scholar
  36. 36.
    Antina EV, Berezin MB, Dudina NA, Burkova SL, Nikonova AY (2014) Synthesis, spectral-luminescent properties of B(III) and Zn(II) complexes with alkyl- and aryl-substituted dipyrrins and Azadipyrrins. Russ J Inorg Chem 59(10):1187–1195CrossRefGoogle Scholar
  37. 37.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, SJ S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372CrossRefGoogle Scholar
  39. 39.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  40. 40.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283CrossRefGoogle Scholar
  41. 41.
    Dudina NA, Antina EV, Guseva GB, V’yugin AI, Semeikin AS Russ (2013) New fluorescent chemosensor for Zn2+ ions on the basis of 3,3′-bis(dipyrrolylmethene). J Org Chem 49(12): 1734–1739Google Scholar
  42. 42.
    Anbu S, Shanmugaraju S, Ravishankaran R, Karande AA, Mukherjee PS (2012) A phenanthrene based highly selective fluorogenic and visual sensor for Cu2+ ion with nanomolar detection limit and its application in live cell imaging. Inorg Chem Commun 25:26–29CrossRefGoogle Scholar
  43. 43.
    Xu T, Duan H, Wang X, Meng X, Bu J (2015) Fluorescence sensors for Zn2+ based on conjugated indole Schiff base. Spectrochim Acta a: molecular and biomolecular. Spectroscopy 138:603–608Google Scholar
  44. 44.
    Avcı A, Kaya I (2015) A new selective fluorescent sensor for Zn(II) ions based on poly(azomethine-urethane. Tetrahedron Lett 56(14):1820–1824CrossRefGoogle Scholar
  45. 45.
    Krämer R (1998) Fluorescent chemosensors for Cu2+ ions: fast, selective, and highly sensitive. Angew Chem Int Ed 37(6):772–773CrossRefGoogle Scholar
  46. 46.
    Xu M, Yin C, Huo F, Zhang Y, Chao J (2014) A highly sensitive “ON–OFF–ON” fluorescent probe with three binding sites to sense copper ion and its application for cell imaging. Sensors Actuators B 204:18–23CrossRefGoogle Scholar
  47. 47.
    Huang H-J, Fang H-Y, Chir J-L, A-T W (2011) Effect of bis-triazoles on a ribose-based fluorescent sensor. J. Luminescence 26(6):518–522CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Natalia A. Bumagina
    • 1
  • Elena V. Antina
    • 1
  • Anna Yu. Nikonova
    • 2
  • Mikhail B. Berezin
    • 1
  • Alexander A. Ksenofontov
    • 1
  • Anatoly I. Vyugin
    • 1
  1. 1.G. A. Krestov Institute of Solution Chemistry of Russian academy of Sciences 1 Akademicheskaya St.IvanovoRussia
  2. 2.Inorganic Chemistry DepartmentIvanovo State University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations