Journal of Fluorescence

, Volume 26, Issue 6, pp 1939–1949 | Cite as

Synthesis and Spectroscopic Investigation of Diketopyrrolopyrrole - Spiropyran Dyad for Fluorescent Switch Application

  • Siva Doddi
  • K. Narayanaswamy
  • Bheerappagari Ramakrishna
  • Surya Prakash Singh
  • Prakriti Ranjan Bangal


We report the synthesis and characterization of a new fluorescent dyad SP-DPP-SP(9) via efficient palladium-catalyzed Sonogashira coupling of prop-2-yn-1-yl 3-(3′,3’dimethyl-6-nitrospiro[chromene-2,2′-indolin]-1′-yl)propanoatespiropyran, SP(8), a well known photochromic accepter, with 3,6-bis(5-bromothiophen-2-yl)-2,5-bis((R)-2-ethylhexyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, DPP(4), a highly fluorescent donor. Under visible light exposure the SP unit is in a closed hydrophobic form, whereas under UV irradiation it converts to a polar, hydrophilic open form named Merocyanine (MC), which is responsible for functioning of photo-switch application. The photochemistry pertaining to fluorescence switch, ‘on/off’ behaviour, of model dyad SP-DPP-SP(9) is experimentally analyzed in solution as well as in solid state in polymer matrices by photoluminescence(PL) and absorption spectroscopy. After absorption of UV light the spiropyran unit of the dyad under goes the rupture of the spiro C-O bond leading to the formation of MC. The absorption band of MC fairly overlaps to the fluorescence of DPP unit resulting quenching of fluorescence via fluorescence resonance energy transfer from exited DPP unit to ground state MC. In contrary, the fluorescence of DPP is fully regained upon transformation of MC to SP by exposure to visible light or thermal stimuli. Hence, the fluorescence intensity of dyad 9 is regulated by reversible conversion among the two states of the photochromic spiropyran units and the fluorescence resonance energy transfer (FRET) between the MC form of SP and the DPP unit. Conversely, these scrutiny of the experiment express that the design of dyad 9 is viable as efficient fluorescent switch molecule in many probable commercial applications, such as, logic gates and photonic and optical communications.


Photochromic Fluorescent switch Fluorescence resonance energy transfer (FRET) Spiropyran Merocyanine 



D. S thank to CSIR and K. N. S and B. R. K to UGC for providing fellowship. PRB and SPS acknowledge the support from CSIR Network project INTELCOAT, CSC-0114.

Supplementary material

10895_2016_1886_MOESM1_ESM.docx (6.4 mb)
Online Resource 1 UV/Vis absorption of SP (8), absorption and emission of MC, absorption and emission of DPP (4), IR and NMR spectra of SP, DPP and SP-DPP- SP. (DOCX 6549 kb)


  1. 1.
    Carter F L, Siatkowsky R E, Woltjien H, In Mole. Electroic Devices, (1988), Elsvier, Amsterdam, The Netherlands.Google Scholar
  2. 2.
    Belser P, Bernhard S, Blum C, Beyeler A, De Cola L, Balzani V (1999) Molecular architecture in the field of photonic devices. Coord Chem Rev 155:190–192. doi: 10.1016/S0010-8545(99)00075-2 Google Scholar
  3. 3.
    Shipway AN, Willner I (2001) Molecular devices and machines: a journey into the Nanoworld. Acc Chem Res 34(6):421. doi: 10.1021/AR000180H CrossRefPubMedGoogle Scholar
  4. 4.
    De Silva AP, McClenaghan ND (2002) All-optical processing with molecular switches. Chem Eur J 99(8):4941–4944. doi: 10.1073/pnas.062631199 Google Scholar
  5. 5.
    Lukas AS, Bushard PJ, Wasielewski MR (2001) Molecular devices and machines: a journey into the Nanoworld. J Am Chem Soc 123:2440. doi: 10.1021/ja036909 CrossRefPubMedGoogle Scholar
  6. 6.
    Bossi M, Belov V, Polyakova S, Hell S W, (2006), Angew. Chem., 118, 7623–7627; Switchable Fluorescent and Solvatochromic Molecular Probes, Angew. Chem. Int. Ed., 2006, 45(44), 7462–7465, doi:10.1002/anie.200602591.Google Scholar
  7. 7.
    Irie M, Kobatake S,. Hirochi M, (2001), Reversible surface morphology changes of a photochromic diarylethene, Science, 291 (5509), 1769–1772, doi: 10.1126/science.291.5509.1769.CrossRefPubMedGoogle Scholar
  8. 8.
    Hirshberg Y, (1956), Reversible formation and eradication of colors by irradiation at low temperatures, Jn. Am Chem Soc, 78(10), 2304 – 2312, doi: 10.1021/ja01591a075.
  9. 9.
    Guo XF, Zhang DQ, Wang TX, Zhu DB (2003) Resettable, Multi-Readout Logic Gates Based on Controllably Reversible Aggregation of Gold Nanoparticles. Chem Commun 50:914–915. doi: 10.1002/anie.201008198 CrossRefGoogle Scholar
  10. 10.
    Guo XF, Zhang DQ, Zhang GX, Zhu DB (2004) Molecular and supramolecular information processing, Jn. Phys Chem B 108:11942–11945. doi: 10.1021/jp047706q CrossRefGoogle Scholar
  11. 11.
    Wallquist O, Lenz R (2002) 20 years of DPP pigments – future perspectives. Macromol Symp 187(1):617–630. doi: 10.1002/1521-3900(200209)187 CrossRefGoogle Scholar
  12. 12.
    Qu S, Tian H (2012) Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chem Commun 48:3039–3051. doi: 10.1039/C2CC17886A CrossRefGoogle Scholar
  13. 13.
    Nielsen CB, Turbiez M, McCulloch I (2013) Development of semiconducting DPP-containing polymers. Adv Mater 25(13):1859–1880. doi: 10.1002/adma.201201795 CrossRefPubMedGoogle Scholar
  14. 14.
    Biniek L, Schroeder BC, Nielsen CB, McCulloch I (2012) Organic spin transporting materials. J Mater Chem 22(30):14803–14813. doi: 10.1039/C2JM31943H CrossRefGoogle Scholar
  15. 15.
    Qu Y, Hua J, Tian H (2010) Colorimetric and Ratiometric red fluorescent Chemosensor. Org Lett 12(15):3320–3323. doi: 10.1021/ol101081m CrossRefPubMedGoogle Scholar
  16. 16.
    Qu S, Wu W, Hua J, Kong C, Long Y, Tian H (2010) New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells. J Phys Chem C 114(2):1343–1349. doi: 10.1021/jp909786k CrossRefGoogle Scholar
  17. 17.
    Qiao Z, Xu Y, Lin S, Peng J, Cao D (2010) Design and synthesis of sulfobetainic diketopyrrolopyrrole (DPP) laser dyes. Synth Met 160(13):1544–1550. doi: 10.1016/j CrossRefGoogle Scholar
  18. 18.
    Chen M, Fu W, Shi M, Hu X, Pan J, Ling J, Li H, Chen H-Z (2013) Application in solution-processed organic solar cells. J Mater Chem A 1(1):105–111. doi: 10.1039/C2TA00148A CrossRefGoogle Scholar
  19. 19.
    Qu S, Qin C, Islam A, Wu Y, Zhu W, Hua J, Tian H, Han L (2012) A novel D–A-π-A organic sensitizer containing a diketopyrrolopyrrole. Chem Commun 48(55):6972–6974. doi: 10.1039/c2cc31998e CrossRefGoogle Scholar
  20. 20.
    Burgi L, Turbiez M, Pfeiffer R, Bienewald F, Kirner HJ, Winnewisser C (2008) High-mobility Ambipolar near-infrared light-emitting polymer field-effect transistors. Adv Mater 20(11):2217–2224. doi: 10.1002/adma.200702775 CrossRefGoogle Scholar
  21. 21.
    Tantiwiwat M, Tamayo A, Luu N, Dang XD, Nguyen TQ (2008) Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors. J Phys Chem C 112(44):17402–17407. doi: 10.1021/jp8068305 CrossRefGoogle Scholar
  22. 22.
    Suraru SL, Zschieschang U, Klauk H, Wurthner F (2011) Diketopyrrolopyrrole as a p-channel organic semiconductor for high performance OTFTs. Chem Commun 47(6):1767–1769. doi: 10.1039/c0cc04395h CrossRefGoogle Scholar
  23. 23.
    Wienk M. M, Turbiez M, Gilot J, Janssen R A J, (2008), Organic solar cells: materials and device physics,.Adv Mater, 20, 2556–2560, doi: 10.1002/adma.200800456.
  24. 24.
    Walker B, Tamayo AB, Dang XD, Zalar P, Seo JH, Garcia A, Tantiwiwat M, Nguyen TQ (2009) Organic and hybrid solar cells. Adv Funct Mater 19(19):3063–3069. doi: 10.1002/adfm.200900832 CrossRefGoogle Scholar
  25. 25.
    Huo L, Hou J, Chen HY, Zhang S, Jiang Y, Chen TL, Yang Y (2009) Principles of polymer design and synthesis. Macromolecules 42(17):6564–6571. doi: 10.1021/ma9012972 CrossRefGoogle Scholar
  26. 26.
    Bijleveld JC, Gevaerts VS, Di Nuzzo D, Turbiez M, Mathijssen SGJ, DeLeeuw DM, Wienk MM, Janssen RAJ (2010) Efficient solar cells based on an easily accessible diketopyrrolopyrrole polymer. Adv Mater 22:E242–E246. doi: 10.1002/adma.201001449 CrossRefPubMedGoogle Scholar
  27. 27.
    Sonar P, Ng GM, Lin TT, Dodabalapur A, Chen ZK (2010) Solution processable low bandgap diketopyrrolopyrrole (DPP) based derivatives. J Mater Chem 20(18):3626–3636. doi: 10.1039/b924404b CrossRefGoogle Scholar
  28. 28.
    Uzunova VD, Cullinane C, Brix K, Nau WM, Day AI (2010) Toxicity of cucurbit[7]uril and cucurbit[8]uril. Org Biomol Chem 8(9):2037–2042. doi: 10.1039/b925555a CrossRefPubMedGoogle Scholar
  29. 29.
    Wheate NJ, Buck DP, Day AI, Collins JG (2006) Cucurbit[n]uril binding of platinum anticancer complexes. Dalton Trans 21(3):451–458. doi: 10.1039/B513197A CrossRefGoogle Scholar
  30. 30.
    Marquez C, Huang F, Nau WM (2004) Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays. IEEE Trans Nanobiosci 3(1):39–45. doi: 10.1109/TNB.2004.824269 CrossRefGoogle Scholar
  31. 31.
    Claire HW, Beaujuge PM, Holcombe TW, Lee OP, Fre’chet JMJ (2010) Incorporation of furan into low band-gap polymers for efficient solar cells. J Am Chem Soc 132(44):15547–15549. doi: 10.1021/ja108115y CrossRefGoogle Scholar
  32. 32.
    Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184. doi: 10.1039/C3CS60181A CrossRefPubMedGoogle Scholar
  33. 33.
    Nayak A, Liu H, Belfort G (2006) An optically reversible switching membrane surface. Angew Chem Int Ed 45:4094–4098. doi: 10.1002/anie.200600581 CrossRefGoogle Scholar
  34. 34.
    Wu S, Luo Y, Zeng F, Chen J, Chen Y, Tong Z (2007) Photoreversible fluorescence modulation of a rhodamine dye by supramolecular complexation with photosensitive Cyclodextrin. Angew Chem Int Ed 46:7015–7018. doi: 10.1002/anie.200701396 CrossRefGoogle Scholar
  35. 35.
    Satoh T,.Sumaru K, Takagi T, Takai K and Kanamori T, (2011), Isomerization of spirobenzopyrans bearing electron-donating and electron-withdrawing groups in acidic aqueous solutions, Phys Chem Chem Phys, 13(16), 7322–7329, doi: 10.1039/C1CP90045E.CrossRefPubMedGoogle Scholar
  36. 36.
    Whelan J, Abdullah D, Wojtyka J, Buncel E (2010) Micro-environmental fine-tuning of electronic and kinetic properties of photochromic dyes. J Mater Chem 20:5727–5735. doi: 10.1039/C0JM00585A CrossRefGoogle Scholar
  37. 37.
    Chen L, Wu J, Schmuckb C, Tian H (2014) An amphiphilic squarylium indocyanine dye for long-term tracking of lysosomes. Chem Commun 50:6443–6446. doi: 10.1039/C4CC00670D CrossRefGoogle Scholar
  38. 38.
    Chen J, Zeng F, Wu S, Chen Q and.Tong Z, (2008), A Core–Shell Nanoparticle Approach to Photoreversible Fluorescence Modulation of a Hydrophobic Dye in Aqueous Media, Chem–Eur J, 14(16), 4851–4860, doi: 10.1002/chem.200701994.
  39. 39.
    Keum SR, Ahn SM, Roh SJ, Ma SY (2010) The synthesis and spectroscopic properties of novel, photochromic indolinobenzospiropyran-based homopolymers. Dyes Pigments 86(1):74–80. doi: 10.1016/j.dyepig.2009.12.002 CrossRefGoogle Scholar
  40. 40.
    Li X, Wang Y, Matsuura T, Meng J (1999) Synthesis of new spiropyrans and Spirooxazines having a Heteroaromatic pendant and their photochromic behavior. Heterocycles 51(11):2639–2651. doi: 10.3987/COM-99-8663 CrossRefGoogle Scholar
  41. 41.
    Zhang J, Riskin M, Vered RT, Tian H, Willner I (2011) Photochemical Switching of the Phase-Transition Temperatures of p-NIPAM–Pt Nanoparticles. Chem–Eur J, 17(40):11237–11242. doi: 10.1002/chem.201100714 Google Scholar
  42. 42.
    Namba K, Suzuki S (1975) Organic photochromic and Thermochromic compounds. Bull Chem Soc Jpn 48:1323–1324. doi: 10.1039/C39850001323 CrossRefGoogle Scholar
  43. 43.
    Berkovic G, Krongauz V, Weiss V (2000) Spiropyrans and Spirooxazines for memories and switches. Chem Rev 100(5):1741–1754. doi: 10.1021/cr9800715 CrossRefPubMedGoogle Scholar
  44. 44.
    Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100(5):1777–1788. doi: 10.1021/cr980073p CrossRefPubMedGoogle Scholar
  45. 45.
    Collins GE, Choi LS, Ewing KJ, Michelet V, Bowen CM, Winkler JD (1999) Spiropyran Modified Micro-fluidic Chip Channels as Photonically Controlled Self-Indicating System. Chem Commun 2004(11):321–322. doi: 10.1039/B312962D CrossRefGoogle Scholar
  46. 46.
    Inouye M, Akamatsu K, Nakazumi H (1997) New crown spirobenzopyrans as light- and ion-responsive dual-mode signal transducers. J Am Chem Soc 119(39):9160–9165. doi: 10.1021/ja9707668 CrossRefGoogle Scholar
  47. 47.
    Dvornikov AS, Malkin J, Rentzepis PM (1994) Spectroscopy and kinetics of photochromic materials for 3D optical memory devices. J Phys Chem 98(27):6746–6752. doi: 10.1021/j100078a016 CrossRefGoogle Scholar
  48. 48.
    Wojtyk JTC, Kazmaier PM, Buncel E (1998) Molecular organometallic materials for optics. Chem Commun:1703–1704. doi: 10.1039/A804908D
  49. 49.
    Wojtyk JTC, Kazmaier PM, Buncel E (2001) Modulation of the Spiropyran-Merocyanine Reversion. Chem Mater 13(8):2547–2551. doi: 10.1021/cm010038q CrossRefGoogle Scholar
  50. 50.
    Liu DB, Chen WW, Sun K, Deng K, Zhang W, Wang Z, Jiang XY (2011) Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2. Angew Chem Int Ed 50:4103–4107. doi: 10.1002/anie.201008198 CrossRefGoogle Scholar
  51. 51.
    Raymo FM, Giordani S (2001) Signal processing at the molecular level. J Am Chem Soc 123(19):4651–4652. doi: 10.1021/ja005699n CrossRefPubMedGoogle Scholar
  52. 52.
    Ji C, Yin L, Li K, Wang L, Jiang X, Suna Y, Li Y (2015) D–π–A–π–D-type low band gap diketopyrrolopyrrole based small molecules containing an ethynyl-linkage. RSC Adv 5:31606–31614. doi: 10.1039/C5RA01946 CrossRefGoogle Scholar
  53. 53.
    Liu SY, Shi MM, Huang JC, Jin ZN, Hu XL, Pan JY, Li HY, Jen AKY, Chen HZ (2013) C–H activation: making diketopyrrolopyrrole derivatives easily accessible. J Mater Chem A 1(8):2795–2805. doi: 10.1039/C2TA01318E CrossRefGoogle Scholar
  54. 54.
    Liu W, Yaoa J, Zhan C (2015) RSC Adv 5:74238–74241. doi: 10.1039/C5RA16725F CrossRefGoogle Scholar
  55. 55.
    Zhu Y, Rabindranath R, Beyerlein T, Tieke B (2007) Highly luminescent 1,4-Diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole- (DPP-) based conjugated polymers. Macromolecules 40(19):6981–6989. doi: 10.1021/ma0710941 CrossRefGoogle Scholar
  56. 56.
    Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable Photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET), J. Am Chem Soc 124:7481–7489. doi: 10.1021/ja016969k CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Siva Doddi
    • 1
  • K. Narayanaswamy
    • 2
  • Bheerappagari Ramakrishna
    • 1
  • Surya Prakash Singh
    • 2
  • Prakriti Ranjan Bangal
    • 2
  1. 1.Inorganic and Physical Chemistry DivisionIndian Institute of Chemical TechnologyHyderabadIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia

Personalised recommendations