Advertisement

Journal of Fluorescence

, Volume 26, Issue 5, pp 1729–1736 | Cite as

Thiacalix[4]arene-tetra-(quinoline-8- sulfonate): a Sensitive and Selective Fluorescent Sensor for Co (II)

  • Krunal Modi
  • Urvi Panchal
  • Shuvankar Dey
  • Chirag Patel
  • Anita Kongor
  • Himanshu A. Pandya
  • V. K. Jain
ORIGINAL ARTICLE

Abstract

A novel fluorescent thiacalix[4]arene-tetra-(quinoline-8-sulfonate) (TCTQ8S) was synthesized by condensation of thiacalix[4]arene (TCA) and 8-quinoline sulfonyl chloride(8QSC). TCTQ8S was characterized by ESI-MS, 1H-NMR and 13C-NMR spectroscopic methods. TCTQ8S was found to be an efficient “turn-off” fluorescent sensor for the selective and sensitive recognition of Co(II) ions. The Job’s plot measurement reveals a 1:1 stoichiometric ratio. The designed chemosensor exhibited high selectivity toward Co(II) ions vs. other tested metal ions, with a detection limit of up to 1.038 × 10−9 M. The binding constant and quantum yield for the complex were also determined. Molecular docking studies have been successfully performed to support 1:1 binding of TCTQ8S with the Co(II) metal ion. TCTQ8S was evaluated for real sample analysis on water sample for the detection of Co(II).

Graphical Abstract

Thiacalix derivatized fluorescent sensor for the selective detection of Co(II)

Keywords

Thiacalix[4]arene 8-quinoline sulfonyl chloride Cobalt (II) Fluorescence quenching Molecular docking 

Supplementary material

10895_2016_1864_MOESM1_ESM.doc (1.3 mb)
ESM 1 (DOC 1331 kb)

References

  1. 1.
    Kumar R, Lee YO, Bhalla V, Kumar M, Kim JS (2014) Recent developments of thiacalixarene based molecular motifs. Chem Soc Rev 43(13):4824–4870CrossRefPubMedGoogle Scholar
  2. 2.
    Lhoták P (2004) Chemistry of thiacalixarenes. Eur J Org Chem 2004(8):1675–1692. doi: 10.1002/ejoc.200300492 CrossRefGoogle Scholar
  3. 3.
    Ni X-L, Zeng X, Redshaw C, Yamato T (2011) Synthesis and evaluation of a novel pyrenyl-appended triazole-based thiacalix[4]arene as a fluorescent sensor for Ag + ion. Tetrahedron 67(18):3248–3253. doi: 10.1016/j.tet.2011.03.008 CrossRefGoogle Scholar
  4. 4.
    Kumar M, Kumar N, Bhalla V (2012) Rhodamine appended thiacalix[4]arene of 1,3-alternate conformation for nanomolar detection of Hg2+ ions. Sensors Actuators B Chem 161(1):311–316. doi: 10.1016/j.snb.2011.10.037 CrossRefGoogle Scholar
  5. 5.
    Darjee SM, Mishra DR, Bhatt KD, Vyas DJ, Modi KM, Jain VK (2014) A new colorimetric and fluorescent chemosensor based on thiacalix[4]arene for fluoride ions. Tetrahedron Lett 55(51):7094–7098. doi: 10.1016/j.tetlet.2014.10.149 CrossRefGoogle Scholar
  6. 6.
    Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T (2009) Coumarin-derived Cu2 + −selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131(5):2008–2012CrossRefPubMedGoogle Scholar
  7. 7.
    Dhir A, Bhalla V, Kumar M (2008) Ratiometric sensing of Hg2+ based on the calix [4] arene of partial cone conformation possessing a dansyl moiety. Org Lett 10(21):4891–4894CrossRefPubMedGoogle Scholar
  8. 8.
    Stoikov II, Sitdikov RR, Mostovaya OA (2014) Aminoanthraquinone derivatives based on p-tert-butylthiacalix[4]arene. Synthesis and fluorescence properties. Russ J Org Chem 50(4):581–588. doi: 10.1134/s107042801404023x CrossRefGoogle Scholar
  9. 9.
    Kumar M, Kumar R, Bhalla V (2009) F−−Induced ‘turn-on’ fluorescent chemosensor based on 1,3-alt thiacalix[4]arene. Tetrahedron 65(22):4340–4344. doi: 10.1016/j.tet.2009.03.074 CrossRefGoogle Scholar
  10. 10.
    Agrawal VK, Bano S, Supuran CT, Khadikar PV (2004) QSAR study on carbonic anhydrase inhibitors: aromatic/heterocyclic sulfonamides containing 8-quinoline-sulfonyl moieties, with topical activity as antiglaucoma agents. Eur J Med Chem 39(7):593–600. doi: 10.1016/j.ejmech.2004.03.002 CrossRefPubMedGoogle Scholar
  11. 11.
    Meng X, Zhu M, Wang S (2012) Quinoline-based fluorescence sensors. INTECH Open Access PublisherGoogle Scholar
  12. 12.
    Schwarz F, Kirchgessner M, Stangl G (2000) Cobalt requirement of beef cattle—feed intake and growth at different levels of cobalt supply. J Anim Physiol Anim Nutr 83(3):121–131CrossRefGoogle Scholar
  13. 13.
    Lok KS, Lee PPF, Kwok YC, Nguyen N-T (2012) Rapid determination of vitamin B 12 concentration with a chemiluminescence lab on a chip. Lab Chip 12(13):2353–2361CrossRefPubMedGoogle Scholar
  14. 14.
    Bernard MA, Nakonezny PA, Kashner TM (1998) The effect of vitamin B12 deficiency on older veterans and its relationship to health. J Am Geriatr Soc 46(10):1199–1206CrossRefPubMedGoogle Scholar
  15. 15.
    Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274. doi: 10.1016/j.pbi.2009.04.009 CrossRefPubMedGoogle Scholar
  16. 16.
    Palit S, Sharma A, Talukder G (1994) Effects of cobalt on plants. Bot Rev 60(2):149–181CrossRefGoogle Scholar
  17. 17.
    Rastegarzadeh S, Moradpour Z (2007) Construction of an optical sensor for cobalt determination based on methyltrioctylammonium chloride immobilized on a polymer membrane. Instrum Sci Technol 35(6):637–647CrossRefGoogle Scholar
  18. 18.
    Raghav R, Srivastava S (2015) Gold nanoparticles based colorimetric detection of cobalt (II) ions. Sens Lett 13(3):254–258CrossRefGoogle Scholar
  19. 19.
    Mehta VN, Mungara AK, Kailasa SK (2013) Dopamine dithiocarbamate functionalized silver nanoparticles as colorimetric sensors for the detection of cobalt ion. Anal Methods 5(7):1818–1822CrossRefGoogle Scholar
  20. 20.
    Yin Z, Zhong T, Liu R (2013) An optical chemical sensor for cobalt ion based on fluorescence quenching of 5-tert-butyl-2-methoxy thiacalix [4] arene. Yingyong Huaxue 30(4):464–468. doi: 10.3724/SP.J.1095.2013.20224 Google Scholar
  21. 21.
    Lokhande RS, Sharma MR, Pawar RN, Chaudhary AB (2004) Extraction and spectrophotometric: determination of Co(II) with phosphorous containing p-tert-butylthiacalix (4) arene. Chem Environ Res 13(3 & 4):253–258Google Scholar
  22. 22.
    Patra S, Paul P (2009) Synthesis, characterization, electrochemistry and ion-binding studies of ruthenium (II) bipyridine receptor molecules containing calix [4] arene-azacrown as ionophore. Dalton Trans 40:8683–8695CrossRefPubMedGoogle Scholar
  23. 23.
    Bhatt KD, Makwana BA, Vyas DJ, Mishra DR, Jain VK (2014) Selective recognition by novel calix system: ICT based chemosensor for metal ions. J Lumin 146:450–457. doi: 10.1016/j.jlumin.2013.10.004 CrossRefGoogle Scholar
  24. 24.
    Boricha VP, Patra S, Chouhan YS, Sanavada P, Suresh E, Paul P (2009) Synthesis, characterisation, electrochemistry and ion-binding studies of ruthenium (II) and rhenium (I) bipyridine/crown ether receptor molecules. Eur J Inorg Chem 2009(9):1256–1267CrossRefGoogle Scholar
  25. 25.
    Bhatt KD, Gupte HS, Makwana BA, Vyas DJ, Maity D, Jain VK (2012) Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe (III), Co (II) and Cu (II). J Fluoresc 22(6):1493–1500CrossRefPubMedGoogle Scholar
  26. 26.
    Murphy CB, Zhang Y, Troxler T, Ferry V, Martin JJ, Jones WE (2004) Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem B 108(5):1537–1543CrossRefGoogle Scholar
  27. 27.
    Larsen RW, Helms MK, Everett WR, Jameson DM (1999) Ground-and excited-state characterization of an electrostatic complex between Tetrakis-(4-Sulfonatophenyl) porphyrin and 16-Pyrimidinium crown-4. Photochem Photobiol 69(4):429–434Google Scholar
  28. 28.
    Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76(9):1260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Krunal Modi
    • 1
  • Urvi Panchal
    • 1
  • Shuvankar Dey
    • 1
  • Chirag Patel
    • 2
  • Anita Kongor
    • 1
  • Himanshu A. Pandya
    • 2
  • V. K. Jain
    • 1
  1. 1.Department of ChemistryUniversity School of sciences, Gujarat UniversityAhmedabadIndia
  2. 2.Department of Bioinformatics, Applied Botany Centre (ABC)University School of sciences, Gujarat UniversityAhmedabadIndia

Personalised recommendations