Advertisement

Journal of Fluorescence

, Volume 26, Issue 5, pp 1573–1577 | Cite as

Investigating Two-Photon-Induced Fluorescence in Rhodamine-6G in Presence of Cetyl-Trimethyl-Ammonium-Bromide

  • Sandeep Kumar Maurya
  • Dheerendra Yadav
  • Debabrata Goswami
ORIGINAL ARTICLE

Abstract

We investigate the effect of cetyl-trimethyl-ammonium-bromides (CTAB) concentration on the fluorescence of Rhodamine-6G in water. This spectroscopic study of Rhodamine-6G in presence of CTAB was performed using two-photon-induced-fluorescence at 780 nm wavelength using high repetition rate femtosecond laser pulses. We report an increment of ∼10 % in the fluorescence in accordance with ∼12 % enhancement in the absorption intensity of the dye molecule around the critical micellar concentration. We discuss the possible mechanism for the enhancement in the two-photon fluorescence intensity and the importance of critical micellar concentration.

Keywords

Critical micelle concentration (CMC) Two photon induced fluorescence (TPIF) Cetyltrimethylammonium bromides (CTAB) Rhodamine 6G 

Notes

Acknowledgements

DG thanks the support from the Wellcome Trust Senior Research Fellowship (UK) and Swarnajayanti Fellowship from DST, India for funding. SKM thanks UGC, India for graduate fellowship. We thank Mrs. S. Goswami for language check.

References

  1. 1.
    Kartal C, Akbas H (2005) Study on the interaction of anionic dye–nonionic surfactants in a mixture of anionic and nonionic surfactants by absorption spectroscopy. Dyes Pigm 65:191–195CrossRefGoogle Scholar
  2. 2.
    Tunc S, Duman O (2007) Investigation of interactions between some anionic dyes and cationic surfactants by conductometric method. Fluid Phase Equilib 251:1–7CrossRefGoogle Scholar
  3. 3.
    Yang J (2004) Interaction of surfactants and aminoindophenol dye. J Colloid Interface Sci 274:237–243CrossRefPubMedGoogle Scholar
  4. 4.
    Purkait M, DasGupta S, De S (2004) Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Separation Purification Tech 37:81–92CrossRefGoogle Scholar
  5. 5.
    Purkait M, DasGupta S, De S (2004) Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J Colloid Interface Sci 270:496–506CrossRefPubMedGoogle Scholar
  6. 6.
    Bilski P, Holt R, Chignell C (1997) Photochemistry and picosecond absorption spectra of aqueous suspensions of a polycrystalline titanium dioxide optically transparent in the visible spectrum. J Photochem Photobio A: Chem 110:67–75CrossRefGoogle Scholar
  7. 7.
    Hait SK, Majhi PR, Blume A, Moulik SP (2003) A critical assessment of micellization of sodium dodecyl benzene sulfonate (SDBS) and its interaction with poly(vinyl pyrrolidone) and hydrophobically modified polymers, JR 400 and LM 200. J Phys Chem B 107:3650–3658CrossRefGoogle Scholar
  8. 8.
    Garcia-Rio L, Hervella P, Mejuto JC, Parajo M (2007) Spectroscopic and kinetic investigation of the interaction between crystal violet and sodium dodecylsulfate. Chem Phys 335:164–176CrossRefGoogle Scholar
  9. 9.
    Rashidi-Alavijeha M, Javadiana S, Gharibia H, Moradia M, Tehrani-Baghab AR, Shahira AA (2011) Intermolecular interactions between a dye and cationic surfactants: effects of alkyl chain, head group, and counterion. Colloids Surfaces A: Physicochem Eng Aspects 380:119–127CrossRefGoogle Scholar
  10. 10.
    Ozeki S, Ikeda S (1982) The sphere-rod transition of micelles and the two-step micellization of dodecyltrimethylammonium bromide in aqueous NaBr solutions. J Colloid Interface Sci 87:424–430CrossRefGoogle Scholar
  11. 11.
    Imae T, Kamiya R, Ikeda S (1985) Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions. J Colloid Interface Sci 108:215–225CrossRefGoogle Scholar
  12. 12.
    Bielska M, Sobczynska A, Prochaska K (2009) Dye–surfactant interaction in aqueous solutions. Dyes Pigm 80:201–205CrossRefGoogle Scholar
  13. 13.
    Abuin E, Lissi E, Jara P (2007) Effect of the organic solvent on the interfacial micropolarity of AOT-Water reverse micelles. J Chil Chem Soc 52:1082–1087Google Scholar
  14. 14.
    Tatikolov AS, Costa SMB (2001) Effects of normal and reverse micellar environment on the spectral properties, isomerization and aggregation of a hydrophilic cyanine dye. Chem Phys Lett 346:233–240CrossRefGoogle Scholar
  15. 15.
    Song A, Zhang J, Zhang M, Shen T, Tang J (2000) Spectral properties and structure of fluorescein and its alkyl derivatives in micelles. Colloids Surface A: Physicochem Eng Aspects 167:253–262CrossRefGoogle Scholar
  16. 16.
    Shannigrahi M, Bagchi S (2005) Novel fluorescent probe as aggregation predictor and micro-polarity reporter for micelles and mixed micelles. Spectrochim Acta A 61:2131–2138CrossRefGoogle Scholar
  17. 17.
    Topel O, Cakir BA, Budama L, Hoda N (2013) Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J Mol Liq 177:40–43CrossRefGoogle Scholar
  18. 18.
    Anand U, Jash C, Mukherjee S (2011) Spectroscopic determination of critical micelle concentration in aqueous and non-aqueous media using a non-invasive method. J Colloid Interface Sci 364:400–406CrossRefPubMedGoogle Scholar
  19. 19.
    Alargova RG, Kochijashky II, Sierra ML, Zana R (1998) Micelle aggregation numbers of surfactants in aqueous solutions: a comparison between the results from steady-state and time-resolved fluorescence quenching. Langmuir 14:5412–5418CrossRefGoogle Scholar
  20. 20.
    Yu LL, Tan MY, Ho B, Ding JL, Wohland T (2006) Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: aggregation of a lipopolysaccharide. Anal Chim Acta 556:216–225CrossRefPubMedGoogle Scholar
  21. 21.
    Luschtinetz F, Dosche C (2009) Determination of micelle diffusion coefficients with fluorescence correlation spectroscopy (FCS). J Colloid Interface Sci 338:312–315CrossRefPubMedGoogle Scholar
  22. 22.
    Zettl H, Portnoy Y, Gottlieb M, Krausch G (2005) Investigation of micelle formation by fluorescence correlation spectroscopy. J Phys Chem B 109:13397–13401CrossRefPubMedGoogle Scholar
  23. 23.
    Wattebled L, Laschewsky A, Moussa A, Habib-Jiwan JL (2006) Aggregation numbers of cationic oligomeric surfactants: a time-resolved fluorescence quenching study. Langmuir 14:2551–2557CrossRefGoogle Scholar
  24. 24.
    Malliaris A, Binana-Limbele W, Zana R (1986) Fluorescence probing studies of surfactant aggregation in aqueous solutions of mixed ionic micelles. J Colloid Interface Sci 110:114–120CrossRefGoogle Scholar
  25. 25.
    Panda K, Sarkar G, Manna K (2009) Physicochemical studies on surfactant aggregation 1. Effect of polyethylene glycols on the micellization of SDS. J Disper Sci Technol 30:1152–1160CrossRefGoogle Scholar
  26. 26.
    Gao L, Zhao L, Huang X, Xu B, Yan Y, Huang J (2011) A surfactant type fluorescence probe for detecting micellar growth. J Colloid Interface Sci 354:256–260CrossRefPubMedGoogle Scholar
  27. 27.
    Ananthapadmanabhan KP, Goddard ED, Turro NJ, Kuot PL (1985) Fluorescence probes for critical micelle concentration. Langmuir 1:352–355CrossRefPubMedGoogle Scholar
  28. 28.
    Mehreteab A, Chen B (1995) Fluorescence technique for the determination of low critical micelle concentrations. J Am Oil Chem Soc 72:49–52CrossRefGoogle Scholar
  29. 29.
    Ahmadi MF, Rusling JF (1995) Fluorescence studies of solute microenvironment in. Composite clay-surfactant films, Langmuir 11:94–100Google Scholar
  30. 30.
    Karukstis KK, McDonough JR (2005) Characterization of the aggregates of N-Alkyl-N-methylpyrrolidinium bromide surfactants in aqueous solution. Langmuir 21:5716–5721CrossRefPubMedGoogle Scholar
  31. 31.
    Mohr A, Talbiersky P, Korth H-G, Sustmann R, Boese R, Bläser D, Rehage H (2007) A new pyrene-based fluorescent probe for the determination of critical micelle concentrations. J Phys Chem B 111:12985–12992CrossRefPubMedGoogle Scholar
  32. 32.
    Singh TS, Mitra S (2007) Fluorescence behavior of intramolecular charge transfer probe in anionic, cationic, and nonionic micelles. J Colloid Interface Sci 311:128–134CrossRefPubMedGoogle Scholar
  33. 33.
    Selwyn JE, Steinfeld JI (1972) Aggregation of equilibriums of xanthene dyes. J Phys Chem 76:762–774CrossRefGoogle Scholar
  34. 34.
    Wong MM, Schelly ZA (1974) Solvent-jump relaxation kinetics of the association of Rhodamine type laser dyes. J Phys Chem 78:1891–1895CrossRefGoogle Scholar
  35. 35.
    Toptygin D, Packard BZ, Brand L (1997) Resolution of absorption spectra of Rhodamine 6G aggregates in aqueous solution using the law of mass action. Chem Phys Lett 277:430–435CrossRefGoogle Scholar
  36. 36.
    Genwa KR, Mahaveer (2007) Role of surfactant in the studies of solar energy conversion and storage: CTAB-Rhodamine 6G – oxalic acid system. Ind J Chem 46A:91–96Google Scholar
  37. 37.
    Tajalli H, Ghanadzadeh Gilani A, Zakerhamidi MS, Moghadam M (2009) Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions. Spectrochim Acta A 72:697–702CrossRefGoogle Scholar
  38. 38.
    Nag A, De AK, Goswami D (2009) Two-photon cross-section measurements using an optical chopper: z-scan and two-photon fluorescence schemes. J Phys B: At Mol Opt Phys 42:065103(1–9)Google Scholar
  39. 39.
    Hung J, Castillo J, Olaizola AM (2003) Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation. J Lumin 101:263–268CrossRefGoogle Scholar
  40. 40.
    Wang W, Tai OY-H, Tsai WY, T-H CN-C (2005) Non-quadratic-intensity dependence of two-photon absorption induced fluorescence of organic chromophores in solution. J Chem Phys 122:084509CrossRefGoogle Scholar
  41. 41.
    Ghosh S, Roy A, Banik D, Kundu N, Kuchlyan J, Dhir A, Sarkar N (2015) How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO4)? Langmuir 31:2310–2320CrossRefPubMedGoogle Scholar
  42. 42.
    Zeng J, Eckenrode HM, Dounce SM, Dai H-L (2013) Time-resolved molecular transport across living cell membranes. Biophys J 104:139–145CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sandeep Kumar Maurya
    • 1
  • Dheerendra Yadav
    • 1
  • Debabrata Goswami
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations