Advertisement

Journal of Fluorescence

, Volume 26, Issue 4, pp 1421–1429 | Cite as

A Dual-Channel Sensor for Hg2+ Based on a Diarylethene with a Rhodamine B Unit

  • Yongjuan Tang
  • Shiqiang Cui
  • Shouzhi Pu
ORIGINAL ARTICLE

Abstract

A novel diarylethene derivative with a Rhodamine B unit was synthesized successfully. It displayed favorable photochromism upon irradiation with UV/vis light. Upon addition of Hg2+, distinct changes were observed in the absorption and fluorescent spectra due to the formation of a 1:1 ligand/metal complex. As a result, the diarylethene can serve as a fluorescence / colorimetric dual-channel sensor for highly selective and sensitive recognition of Hg2+ in acetonitrile. Moreover, a complicated logic circuit was constructed with the combinational stimuli of UV/vis, Hg2+/ EDTA as input signals and the fluorescence intensity at 605 nm as output signal.

Keywords

Photochromism Diarylethene Rhodamine B Dual-channel sensor Logic circuit 

Notes

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (21362013, 51373072), the Natural Science Foundation of Jiangxi Province (20151BAB203019, 20132BAB203005), and the Young Talents Project of Jiangxi Science and Technology Normal University (2015QNBJRC004).

References

  1. 1.
    Gutknecht J (1981) Inorganic mercury (Hg2+) transport through lipid bilayer membranes. J Membrane Biol 61:61–66CrossRefGoogle Scholar
  2. 2.
    Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang X, Xiao Y, Qian XA (2008) A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed 47:8025–8029CrossRefGoogle Scholar
  4. 4.
    Chen XQ, Pradhan TH, Wang F, Kim JS, Yoon JY (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956CrossRefPubMedGoogle Scholar
  5. 5.
    Dorea JG, Barbosa AC, Silva GS, Dorea JG, Barbosa AC, Silva GS (2006) Fish mercury bioaccumulation as a function of feeding behavior and hydrological cycles of the Rio Negro. Comp Biochem Physiol C 142:275–283Google Scholar
  6. 6.
    Lunvongsa S, Oshima M, Motomizu S (2006) Determination of total and dissolved amount of iron in water samples using catalytic spectrophotometric flow injection analysis. Talanta 68:969–973CrossRefPubMedGoogle Scholar
  7. 7.
    Tesfaldet ZO, Staden JF, Stefan RI (2004) Sequential injection spectrophotometric determination of iron as Fe(II) in multi-vitamin preparations using 1,10-phenanthroline as complexing agent. Talanta 64:1189–1195CrossRefPubMedGoogle Scholar
  8. 8.
    Arnold GL, Weyer S, Anbar AD (2004) Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS. Anal Chem 76:322–327CrossRefPubMedGoogle Scholar
  9. 9.
    Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41:7195–7227CrossRefPubMedGoogle Scholar
  10. 10.
    Kuehn S, Friede S, Zastrow M, Schiebler K, Rueck-Braun K, Elsaesser T (2013) Photophysics of hydrogen bonded diarylethene dimers in the liquid phase. Chem Phys Lett 555:206–211CrossRefGoogle Scholar
  11. 11.
    Zuckerman NB, Kang XW, Chen SW, Konopelski JP (2013) Synthesis of a ferrocene-functionalized unsymmetrical benzo[b]thienyl-thienylethene photoswitch with a cyclopentene core. Tetrahedron Lett 54:1482–1485CrossRefGoogle Scholar
  12. 12.
    Liu KY, Wen Y, Shi T, Li Y, Li FY, Zhao YL, Huang CH, Yi T (2014) DNA gated photochromism and fluorescent switch in a thiazole orange modified diarylethene. Chem Commun 50:9141–9144CrossRefGoogle Scholar
  13. 13.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716CrossRefPubMedGoogle Scholar
  14. 14.
    Tian H, Yang SJ (2004) Recent progresses on diarylethene based photochromic switches. Chem Soc Rev 33:85–97CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou ZG, Yang H, Shi M, Xiao SZ, Li FY, Yi T, Huang CH (2007) Photochromic organoboron-based dithienylcyclopentene modulated by fluoride and mercuric(II) ions. ChemPhysChem 8:1289–1292CrossRefPubMedGoogle Scholar
  16. 16.
    Ji HS, Kim JH, Yoo JW, Lee HS, Park KM, Kang YJ (2010) A highly Hg(II)-selective chemosensor with unique diarylethene fluorophore. Bull Kor Chem Soc 31:1371–1374CrossRefGoogle Scholar
  17. 17.
    Jing SH, Zheng CH, Pu SZ, Fan CB, Liu G (2014) A highly selective ratiometric fluorescent chemosensor for Hg2+ based on a new diarylethene with a stilbene-linked terpyridine unit. Dyes Pigments 107:38–44CrossRefGoogle Scholar
  18. 18.
    Pu SZ, Jia HJ, Fan CB, Liu G, Fu YL, Jing SH (2015) Highly selective fluorescent chemosensors for the detection of Hg2+ based on photochromic diarylethenes with a terminal terpyridine unit. Tetrahedron 71:3463–3471CrossRefGoogle Scholar
  19. 19.
    Jin JY, Li X, Zhang JJ, Zhao P, Tian H (2013) Rational design of double-check mercury ion chemosensors based on photochromic compounds. Isr J Chem 53:288–293CrossRefGoogle Scholar
  20. 20.
    Huang KW, Yang H, Zhou ZG, Yu MX, Li FY, Gao X, Yi T, Huang CH (2008) Multisignal chemosensor for Cr3+ and its application in bioimaging. Org Lett 10:2557–2560CrossRefPubMedGoogle Scholar
  21. 21.
    Yang H, Zhou ZG, Huang KW, Yu MX, Li FY, Yi T, Huang CH (2007) Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. Org Lett 9:4729–4732CrossRefPubMedGoogle Scholar
  22. 22.
    Zeng X, Dong L, Wu C, Mu L, Xue SF, Tao Z (2009) Highly sensitive chemosensor for Cu(II) and Hg(II) based on the tripodal rhodamine receptor. Sens Actuators B 141:506–510CrossRefGoogle Scholar
  23. 23.
    Dong L, Wu C, Zeng X, Mu L, Xue SF, Tao Z, Zhang JX (2010) The synthesis of a rhodamine B schiff-base chemosensor and recognition properties for Fe3+ in neutral ethanol aqueous solution. Sensors Actuators B Chem 145:433–437CrossRefGoogle Scholar
  24. 24.
    Chai MM, Li M, Zhang D, Wang CC, Ye Y, Zhao YF (2013) Three colorimetric and off–on fluorescent chemosensors for Fe3+ in aqueous media. Luminescence 28:557–561CrossRefPubMedGoogle Scholar
  25. 25.
    Li S, Zhang D, Wang M, Ma Sg, Liu Jh, Zhao Yf, Ye Y (2016) Synthesis and properties of a novel FRET-based ratiometric fluorescent sensor for Cu2+. J Fluoresc 26:769–774Google Scholar
  26. 26.
    Li GC, Tang J, Ding PG, Ye Y (2016) A rhodamine-benzimidazole based chemosensor for Fe3+ and its application in living cells. J Fluoresc 26:155–161CrossRefPubMedGoogle Scholar
  27. 27.
    Pu SZ, Ding HC, Liu G, Zheng CH, Xu HY (2014) Multiaddressing fluorescence switch based on a new photochromic diarylethene with a triazole-linked rhodamine B unit. J Phys Chem C 118:7010–7017CrossRefGoogle Scholar
  28. 28.
    Pu SZ, Ma LL, Liu G, Ding HC, Chen B (2015) A multiple switching diarylethene with a phenyl-linked rhodamine B unit and itsapplication as chemosensor for Cu2+. Dyes Pigments 113:70–77CrossRefGoogle Scholar
  29. 29.
    Li CY, Zhou Y, Li YF, Kong XF, Zou CX, Weng C (2013) Colorimetric and fluorescent chemosensor for citrate based on a rhodamine and Pb2+ complex in aqueous solution. Anal Chim Acta 774:79–84CrossRefPubMedGoogle Scholar
  30. 30.
    Li ZX, Liao LY, Sun W, Xu CH, Zhang C, Fang CJ, Yan CH (2008) Reconfigurable cascade circuit in a photo- and chemical-switchable fluorescent diarylethene derivative. J Phys Chem C 112:5190–5196CrossRefGoogle Scholar
  31. 31.
    Irie M, Lifka T, Kobatake S, Kato N (2000) Photochromism of 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene in a single-crystalline phase. J Am Chem Soc 122:4871–4876CrossRefGoogle Scholar
  32. 32.
    Wang S, Shen W, Feng Y, Tian H (2006) A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chem Commun 14:1497–1499Google Scholar
  33. 33.
    Irie S, Kim MS, Kawai T, Irie M (2004) The radiation-induced coloration of amorphous photochromic dithienylethene films. Bull Chem Soc Jpn 77:1037–1040CrossRefGoogle Scholar
  34. 34.
    Pu SZ, Liu G, Shen L, Xu JK (2007) Efficient synthesis and properties of isomeric photochromic diarylethenes having a pyrrole unit. Org Lett 9:2139–2142CrossRefPubMedGoogle Scholar
  35. 35.
    Fan CB, Pu SZ, Liu G, Yang TS (2008) Substituent position effect on the properties of new unsymmetrical isomeric diarylethenes having a chlorine atom. J Photochem Photobiol A 197:415–425CrossRefGoogle Scholar
  36. 36.
    Wu JS, Liu WM, Zhuang XQ, Wang F, Wang PF, Tao SL, Zhang XH, Wu SK, Lee ST (2007) Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C = N isomerization. Org Lett 9:33–36CrossRefPubMedGoogle Scholar
  37. 37.
    Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707CrossRefGoogle Scholar
  38. 38.
    Yadava UN, Panta P, Sahoob SK, Shankarling GS (2014) A novel colorimetric and fluorogenic chemosensor for selective detection of Cu2+ ions in mixed aqueous media. RSC Adv 4:42647–42653CrossRefGoogle Scholar
  39. 39.
    Liu BY, Zeng F, Wu GF, Wu SZ (2012) Nanoparticles as scaffolds for FRET-based ratiometric detection of mercury ions inwater with QDs as donors. Analyst 137:3717–3724CrossRefPubMedGoogle Scholar
  40. 40.
    Yuan C, Liu BH, Liu F, Han MY, Zhang ZP (2014) Fluorescence “turn on” detection of mercuric ion based on bis(dithiocarbamato)copper(II) complex functionalized carbon nanodots. Anal Chem 86:1123–1130CrossRefPubMedGoogle Scholar
  41. 41.
    Xu LQ, Neoh KG, Kang ET, Fu GD (2013) Rhodamine derivative-modified filter papers for colorimetric and fluorescent detection of Hg2+ in aqueous media. J Mater Chem A 1:2526–2532CrossRefGoogle Scholar
  42. 42.
    Li JF, Wu YZ, Song FY, Wei G, Cheng YX, Zhu CJ (2012) A highly selective and sensitive polymer-based off-on fluorescent sensor for Hg2+ detection incorporating salen and perylenyl moieties. J Mater Chem 22:478–482CrossRefGoogle Scholar
  43. 43.
    Park M, Seo S, Lee IS, Jung JH (2010) Ultraefficient separation and sensing of mercury and methylmercury ions in drinkingwater by using aminonaphthalimide-functionalized Fe3O4@SiO2 core/shell magneticnanoparticles. Chem Commun 46:4478–4480CrossRefGoogle Scholar
  44. 44.
    Saha S, Chhatbar MU, Mahato P, Praveen L, Siddhanta AK, Das A (2012) Rhodamine–alginate conjugate as self indicating gel beads for efficient detection and scavenging of Hg2+ and Cr3+ in aqueous media. Chem Commun 48:1659–1661CrossRefGoogle Scholar
  45. 45.
    Zhu M, Yuan MJ, Liu XF, Xu JL, Lv J, Huang CS, Liu HB, Li YL, Wang S, Zhu DB (2008) Visible near-infrared chemosensor for mercury ion. Org Lett 10:1481–1484CrossRefPubMedGoogle Scholar
  46. 46.
    Arivazhagan C, Borthakur R, Ghosh S (2015) Ferrocene and triazole-appended rhodamine based multisignaling sensors for Hg2+ and their application in live cell imaging. Organometallics 34:1147–1155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal UniversityNanchangChina

Personalised recommendations