Journal of Fluorescence

, Volume 26, Issue 3, pp 1045–1052 | Cite as

Synthesis and Photophysical Studies of Thiadiazole[3,4-c]pyridine Copolymer Based Organic Field-Effect Transistors

  • Chinna Bathula
  • Sang Kyu Lee
  • Pranav Kalode
  • Sachin Badgujar
  • Ningaraddi S. Belavagi
  • Imtiyaz Ahmed M. Khazi
  • Youngjong Kang


A novel thiadiazolo[3,4-c]pyridine] based donor-acceptor (D-A) copolymer, poly[4,8-bis(triisopropylsilylethynyl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-[4,7-bis(4-(2-ethylhexyl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine] (PTBDTPT), containing triisopropylsilylethynyl(TIPS)benzo[1,2-b:4,5-b′]dithiophene as a donor is synthesized by Stille polymerization reaction. All the important photo physical prerequisites for organic field-effect transistor (OFET) application such as strong and broad optical absorption, thermal stability, and compatible HOMO-LUMO levels can be accomplished and combined on one macromolecule. Optical band gap of the polymer was found to be 1.61 eV as calculated from its film onset absorption edge. The hole mobility of bottom gate OFET using the synthesized polymer as an active channel is found to be 1.92 X 10−2 cm V−1 s−1 with the On/Off ratio of 25. The photophysical study suggests that PTBDTPT is promising candidate for future large area organic electronic applications.


Thiadiazolo[3,4-c]pyridine] Benzodithiophene Photophysical studies Stille reaction Organic field-effect transistors 



We gratefully acknowledge the support by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1401-05.


  1. 1.
    Heeger AJ (2001) Semiconducting and Metallic polymers: the Fourth Generation of polymeric Materials. Angew Chem Int Ed 40:2591–2611CrossRefGoogle Scholar
  2. 2.
    Lewis NS (2007) Toward Cost-Effective Solar energy use. Science 315:798–801CrossRefPubMedGoogle Scholar
  3. 3.
    Bijleveld JC, Zoombelt AP, Mathijssen SG, Wienk MM, Turbiez M, de Leeuw DM, Janssen RA (2009) Poly(diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics. J Am Chem Soc 131:16616–16617CrossRefPubMedGoogle Scholar
  4. 4.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer Photovoltaic cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 270:1789–1791CrossRefGoogle Scholar
  5. 5.
    Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %. Nature Photonics. 3:297–302CrossRefGoogle Scholar
  6. 6.
    Alan H (2014) 25th Anniversary Article: bulk heterojunction Solar cells: Understanding the Mechanism of Operation. Adv Mater 26:10–28CrossRefGoogle Scholar
  7. 7.
    Coffin R, Peet J, Rogers J, Bazan G (2009) Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat Chem 1:657–661CrossRefPubMedGoogle Scholar
  8. 8.
    Kang I, Yun D, Chung S, Kwon S, Kim Y (2013) Record high hole mobility in polymer semiconductors via Side-Chain Engineering. J Am Chem Soc 135:14896–14899CrossRefPubMedGoogle Scholar
  9. 9.
    Bathula C, Sachin B, Belavagi NS, Lee SK, Kang Y, Khazi IM (2016) Synthesis, characterization and optoelectronic properties of benzodithiophene Based copolymers for Application in Solar cells. J Fluoresc 26:371–376CrossRefPubMedGoogle Scholar
  10. 10.
    Kim J-H, Lee M, Yang H, Hwang D-H (2014) High molecular weight triisopropylsilylethynyl (TIPS)-benzodithiophene and Diketopyrrolopyrrole-Based copolymer for high performance organic photovoltaic cells. J Mater Chem A 2:6348–6352CrossRefGoogle Scholar
  11. 11.
    Yuning L, Samarendra S, Prashant S (2010) A high mobility p-type DPP-Thieno[3,2-b]thiophene copolymer for Organic Thin-Film Transistors. Adv. Mate 22:4862–4866CrossRefGoogle Scholar
  12. 12.
    Bathula C, Song CE, Sachin B, Hong S-J, Kang I-N, Moon S-J, Lee J, Cho S, Shim H-K, Lee V (2012) New TIPS-substituted benzo[1,2-b:4,5-b′]dithiophene-based copolymers for application in polymer solar cells. J Mater Chem 22:22224–22232CrossRefGoogle Scholar
  13. 13.
    Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the Bright Future-Bulk heterojunction polymer Solar cells with Power Conversion efficiency of 7.4 %. Adv Mater 22:E135–E138CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou HX, Yang LQ, Stuart AC, Price SC, Liu SB, You W (2011) Development of Fluorinated Benzothiadiazole as a Structural unit for a polymer Solar Cell of 7 % efficiency. Angew Chem Int Ed 50:2995–2998CrossRefGoogle Scholar
  15. 15.
    Price SC, Stuart AC, Yang L, Zhou H, You W (2011) Fluorine substituted Conjugated polymer of medium band gap yields 7 % efficiency in polymer − fullerene solar cells. J Am Chem Soc 133:4625–4631CrossRefPubMedGoogle Scholar
  16. 16.
    Bathula C, Kim M, Song CE, Shin WS, Hwang D-H, Lee J-C, Kang I-N, Lee SK, Park T (2015) Concentration-dependent pyrene-driven self-assembly in benzo[1,2-b:4,5-b′]dithiophene(BDT) Thienothiophene(TT) − Pyrene copolymers. Macromolecules 48:3509–3515CrossRefGoogle Scholar
  17. 17.
    Sanjaykumar SR, Badgujar S, Song CE, Shin WS, Moon S-J, Kang I-N, Lee J, Cho S, Lee SK, Lee J-C (2012) Synthesis and characterization of a novel naphthodithiophene-based copolymer for use in polymer solar cells. Macromolecules 45:6938–6945CrossRefGoogle Scholar
  18. 18.
    Bathula C, Song CE, Sachin B, Hong S-J, Park S-J, Shin WS, Lee J-C, Cho S, Ahn T, Cho S, Moon S-J, Lee SK (2013) Naphtho[1,2-b:5,6-b′]dithiophene-based copolymers for applications to polymer solar cells. Polym Chem 4:2132–2139CrossRefGoogle Scholar
  19. 19.
    Huaxing Z, Yang L, Price SC, Knight KJ, You W (2010) A Geometric Approach to the Crystallographic solution of nonconventional DNA structures: helical superstructures of d(CGATAT). Angew. Chem. Int. Ed. 49:7920–7922CrossRefGoogle Scholar
  20. 20.
    Karsten BP, Bijleveld JC, Viani L, Cornil J, Gierschner J, Janssen RA (2009) Electronic structure of small band gap oligomers based on cyclopentadithiophenes and acceptor units. J Mater Chem 19:5343–5350CrossRefGoogle Scholar
  21. 21.
    Bathula C, Kalode P, Supriya P, Lee SK, Belavagi NS, Khazi IM, Kang Y (2016) Synthesis and electronic properties of thiadiazole[3,4-c]pyridine copolymers for solar cell application. Tetrahedron Lett. 57:998–1002CrossRefGoogle Scholar
  22. 22.
    Fukumoto H, Yamamoto T (2008) Preparation and chemical properties of soluble π-conjugated poly(aryleneethynylene) consisting of azabenzothiadiazole as the electron-accepting unit. J. Polym. Sci., Part A: Polym. Chem. 46:2975–2982Google Scholar
  23. 23.
    Jespersen KG, Beenken WJ, Zaushitsyn Y, Yartsev A, Andersson M, Pullerits T, Sundstrom V (2004) The electronic states of polyfluorene copolymers with alternating donor-acceptor units. J Chem Phys 121:12613–12617CrossRefPubMedGoogle Scholar
  24. 24.
    Yang H-Y, Sun Y-K, Chuang Y-Y, Wang T-L, Shieh Y-T, Chen W-J (2012) Electrochemical impedance parameters elucidate performance of carbazole–triphenylamine–ethylenedioxythiophene-based molecules in dye-sensitized solar cells. Electrochim Acta. 69:256–267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chinna Bathula
    • 1
    • 2
  • Sang Kyu Lee
    • 3
  • Pranav Kalode
    • 4
  • Sachin Badgujar
    • 3
  • Ningaraddi S. Belavagi
    • 5
  • Imtiyaz Ahmed M. Khazi
    • 5
  • Youngjong Kang
    • 1
    • 2
  1. 1.Department of Chemistry, Research Institute for Natural SciencesHanyang UniversitySeoulRepublic of Korea
  2. 2.Institute of Nanoscience and TechnologyHanyang UniversitySeoulRepublic of Korea
  3. 3.Energy Materials Research CenterKorea Research Institute of Chemical Technology (KRICT)DaejeonRepublic of Korea
  4. 4.Department of Physics and Energy Systems ResearchAjou UniversitySuwonRepublic of Korea
  5. 5.CPEPA, Department of ChemistryKarnatak UniversityDharwadIndia

Personalised recommendations