Skip to main content
Log in

Impact of Structural Modification on the Photophysical Response of Benzoquinoline Fluorophores

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Structural influence on the photophysical behavior of two pairs of molecular systems from the biologically potent benzoquinoline family, namely, dimethyl-3-(4-chlorophenyl)-3,4-dihydrobenzo[f]-quinoline-1,2-dicarboxylate, dimethyl-3-(2,6-dichlorophenyl)-3,4-dihydrobenzo[f]quinoline-1,2-dicarboxylate and their corresponding dehydrogenated analogues has been investigated exploiting experimental as well as computational techniques. The study unveils that dehydrogenation in the heterocyclic rings of the studied quinoline derivatives modifies their photophysics radically. Experimental observations imply that the photophysical behavior of the dihydro analogues is governed by the intramolecular charge transfer (ICT) process. However, the ICT process is restricted significantly by the dehydrogenation of the heterocyclic rings. Computational exertion leads to the proposition that the change in the electronic distribution in these molecular systems on dehydrogenation is the rationale behind the dramatic modification of their photophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Law K-Y (1987) Squaraine chemistry: effects of structural changes on the absorption and multiple fluorescence emission of bis[4-(dimethylamino)phenyl]squaraine and its derivatives. J Phys Chem 91:5184–5193

    Article  CAS  Google Scholar 

  2. Allen NS, Mckellar JF (1977) Structural influences on the fluorescence of aminoanthraquinones. J Photochem 7:107–111

    Article  CAS  Google Scholar 

  3. Cowgill RW (1967) Fluorescence and protein structure: X. Reappraisal of solvent and structural effects. Biochim Biophys Acta- Protein Structure 133:6–18

    Article  CAS  Google Scholar 

  4. Neves P, Leite A, Rangel M, de Castro B, Gameiro P (2007) Influence of structural factors on the enhanced activity of moxifloxacin: a fluorescence and EPR spectroscopic study. Anal Bioanal Chem 387:1543–1552

    Article  CAS  PubMed  Google Scholar 

  5. Tu O, Knott T, Marsh M, Bechtol K, Harris D, Barker D, Bashkin J (1998) The influence of fluorescent dye structure on the electrophoretic mobility of end-labeled DNA. Nucl Acids Res 26:2797–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarkar D, Das P, Basak S, Chattopadhyay N (2008) Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study. J Phys Chem B 112:9243–9249

    Article  CAS  PubMed  Google Scholar 

  7. Seeman P, Guan HC, Nobrega J, Jiwa D, Markstein R, Balk JH, Picetti R, Borrelli E, Van Tol HH (1997) Dopamine D2-like sites in schizophrenia, but not in Alzheimer's, Huntington's, or control brains, for [3 H]benzquinoline. Synapse 25:137–146

    Article  CAS  PubMed  Google Scholar 

  8. Schmittel M, Ammon H (1998) A short synthetic route to 4,7-dihalogenated 1,10-phenanthrolines with additional groups in 3,8-position: soluble precursors for macrocyclic oligophenanthrolines. Eur J Org Chem 1998:785–792

    Article  Google Scholar 

  9. Gladiali S, Chelucci G, Mudadu MS, Gastaut MA, Thummel RP (2001) Friedländer synthesis of chiral alkyl-substituted 1,10-phenanthrolines. J Org Chem 66:400–405

    Article  CAS  PubMed  Google Scholar 

  10. Selvi G, Rajendran SP (2004) Synthesis of some new 2-[3-(2-chloroquinolinyl)]-3-aryl-4-thiazolidinones as potent antibacterial agents. J Asian Chem 16:1017–1022

    CAS  Google Scholar 

  11. Bahuguna RP, Joshi BC (1994) Synthesis and antibacterial activity of some novel substituted arylsulfonylbenzo[f]quinolines. Ind J Heterocycl Chem 3:265–268

    CAS  Google Scholar 

  12. Szmuszkovicz J, Darlington WH, Von Voigtlander PF (1988) Preparation and formulation of antipsychotic aminopolyhydrobenz(iso)quinolines and intermediates. Chem Abstr 110:75335

    Google Scholar 

  13. Nozulak J, Vigouret JM, Jaton AL, Hofmann A, Dravid AR, Weber HP, Kalkman HO, Walkinshaw MD (1992) Centrally acting α1-adrenoceptor agonists based on hexahydronaphth[2,3-b]-1,4-oxazines and octahydrobenzo[g]quinolines. J Med Chem 35:480–489

    Article  CAS  PubMed  Google Scholar 

  14. Mikhailitsyn FS, Kozyreva NP, Rabinovich SA, Maksakovskaya YV, Kulikovskaya IM, Dadasheva NR, Lebedeva MN, Bekhli AF, Lychko ND, Uvarova NA (1992) The search for new antiparasitic agents. 10. The synthesis, toxicological and antimalarial properties of nitrogen-containing heterocycles with a 4-(4-alkylpiperazinyl-1) phenylamine substituent (the preparation quinoprazine). Med Parazitol Parazit Bolezni 50–53 Chem Abstr 117: 251317

  15. Bahuguna RP, Joshi BC, Mangal HN (1992) Studies on benzoquinoline derivatives: preparation and antimicrobial activity of azo-derivatives of arylthiobenzo[f]quinoline. J Ind Chem Soc 69:401–402

    CAS  Google Scholar 

  16. Carr BA, Franklin MR (1998) Drug-metabolizing enzyme induction by 2,2'-dipyridyl, 1,7-phenanthroline, 7,8-benzoquinoline and oltipraz in mouse. Xenobiotica 28:949–956

    Article  CAS  PubMed  Google Scholar 

  17. Le HT, Lamb JG, Franklin MR (1996) Drug metabolizing enzyme induction by benzoquinolines, acridine, and quinacrine; tricyclic aromatic molecules containing a single heterocyclic nitrogen. J Biochem Toxicol 11:297–303

    Article  CAS  PubMed  Google Scholar 

  18. Mataga N (1984) Photochemical charge transfer phenomena — picosecond laser photolysis studies. Pure Appl Chem 56:1255–1268

    Article  CAS  Google Scholar 

  19. Barbara F, Jarzeba W (1990) Ultrafast photochemical intramolecular charge transfer and excited state salvation. Adv Photochem 15:1–68

    CAS  Google Scholar 

  20. Verhoeven JW (1990) Electron transport via saturated hydrocarbon bridges: 'exciplex' emission from flexible, rigid and semiflexible bichromophores. Pure Appl Chem 62:1585–1596

    Article  CAS  Google Scholar 

  21. Kakitani T, Matsuda N, Yoshimori A, Mataga N (1995) Present and future perspectives of theoretical aspects of photoinduced charge separation and charge recombination reactions in solution. Prog React Kinet 20:347–381

    CAS  Google Scholar 

  22. Mataga N, Miyasaka H (1999) Electron transfer and exciplex chemistry. Adv Chem Phys 107:431–496

    CAS  Google Scholar 

  23. Marcus RA (1990) Reorganization free energy for eiectron transfers at liquid-liquid and dielectric semiconductor-liquid interfaces. J Phys Chem 94:1050–1055

    Article  CAS  Google Scholar 

  24. Lai RY, Fabrizio EF, Lu L, Jenekhe SA, Bard AJ (2001) Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new donorsacceptor molecule: 3,7-[bis[4-phenyl-2-quinolyl]]-10-methylphenothiazine. J Am Chem Soc 123:9112–9118

    Article  CAS  PubMed  Google Scholar 

  25. Sun XB, Liu YQ, Xu XJ, Yang CH, Yu G, Chen SY, Zhao HZ, Qiu FW, Li YF, Zhu DB (2005) Novel electroactive and photoactive molecular materials based on conjugated donor-acceptor structures for optoelectronic device applications. J Phys Chem B 109:10786–10792

    Article  CAS  PubMed  Google Scholar 

  26. He C, He Q, He Y, Li Y, Bai F, Yang C, Ding Y, Wang L, Ye J (2006) Organic solar cells based on the spin-coated blend films of TPA-th-TPA and PCBM. Solar Energy Mater Solar Cells 90:1815–1827

    Article  CAS  Google Scholar 

  27. Kim YH, Cho DW, Yoon M, Kim D (1996) Observation of hydrogen-bonding effects on twisted intramolecular charge transfer of p-(N,N-diethylamino)benzoic acid in aqueous cyclodextrin solutions. J Phys Chem 100:15670–15676

    Article  CAS  Google Scholar 

  28. Mallick A, Haldar B, Chattopadhyay N (2005) Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6,7-dihydro-12 H indolo-[2,3-a] quinolizine with serum albumins. J Phys Chem B 109:14683–14690

    Article  CAS  PubMed  Google Scholar 

  29. Maiti G, Karmakar R, Kayal U (2013) One pot imino Diels–Alder reaction for the synthesis of 3-aryl-3,4-dihydro- benzo[f]quinoline derivatives catalyzed by antimony trichloride. Tetrahedron Lett 54:2920–2923

    Article  CAS  Google Scholar 

  30. Jones G II, Jackson WR, Choi C-Y, Bergmark WR (1985) Solvent effects on emission yleld and llfetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. J Phys Chem 89:294–300

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven TJ, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09. Gaussian, Inc., CT, Wallingford

    Google Scholar 

  32. Mishra H, Maheshwary S, Tripathi HB, Satyamurthy N (2005) An experimental and theoretical investigation of the photophysics of 1-hydroxy-2-naphthoic acid. J Phys Chem A 109:2746–2754

    Article  CAS  PubMed  Google Scholar 

  33. Catalan J, Valle JC, Palomar J, Diaz C, Paz JLG (1999) The six-membered intramolecular hydrogen bond position as a switch for inducing an excited state intramolecular proton transfer (ESIPT) in esters of o-hydroxynaphthoic acids. J Phys Chem A 103:10921–10934

    Article  CAS  Google Scholar 

  34. De SP, Ash S, Dalai S, Misra A (2007) A DFT-based comparative study on the excited states intramolecular proton transfer in 1-hydroxy-2-naphthaldehyde and 2-hydroxy-3-naphthaldehyde. J Mol Struct THEOCHEM 807:33–41

    Article  CAS  Google Scholar 

  35. Paul BK, Mahanta S, Singh RB, Guchhait N (2010) A DFT-based theoretical study on the photophysics of 4-hydroxyacridine: single-water-mediated excited state proton transfer. J Phys Chem A 114:2618–2627

    Article  CAS  PubMed  Google Scholar 

  36. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  38. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  39. Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous salvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77

    Article  PubMed  Google Scholar 

  40. Purkayastha P, Chattopadhyay N (2000) Role of rotamerization and excited state intramolecular proton transfer in the photophysics of 2-(2′-hydroxyphenyl) benzoxazole, 2-(2′-hydroxyphenyl)benzimidazole and 2-(2′-hydroxyphenyl) benzthiazole: a theoretical study. Phys Chem Chem Phys 2:203–210

    Article  CAS  Google Scholar 

  41. Purkayastha P, Chattopadhyay N (2003) Theoretical modeling for the ground state rotamerisation and excited state intramolecular proton transfer of 2-(2'-hydroxyphenyl)oxazole, 2-(2'-hydroxyphenyl)imidazole, 2-(2'-hydroxyphenyl)thiazole and their benzo analogues. Int J Mol Sci 4:335–361

    Article  CAS  Google Scholar 

  42. Mallick A, Maiti S, Haldar B, Purkayastha P, Chattopadhyay N (2003) Photophysics of 3-acetyl-4-oxo-6,7-dihydro-12 H indolo-[2,3-a] quinolizine: emission from two states. Chem Phys Lett 371:688–693

    Article  CAS  Google Scholar 

  43. Cichos F, Willert A, Rempel U, Borczyskowski CV (1997) Solvation dynamics in mixtures of polar and nonpolar solvents. J Phys Chem A 101:8179–8185

    Article  CAS  Google Scholar 

  44. Kosower EM (1982) Intramolecular donor-acceptor systems. 9. Photophysics of (Pheny1amino)naphthalenesulfonates: a paradigm for excited-state intramolecular charge transfer. Acc Chem Res 15:259–266

    Article  CAS  Google Scholar 

  45. Kosower EM, Tanizawa K (1972) Analysis of fluorescence emission and quenching for molecules bearing latent donors. Chem Phys Lett 16:419–425

    Article  CAS  Google Scholar 

  46. Kosower EM, Dodiuk H, Tanizawa K, Ottolenghi M, Orbach N (1975) Intramolecular donor-acceptor systems. Radiative and nonradiative processes for the excited states of 2-N-Arylamino-6-naphthalenesulfonates. J Am Chem Soc 97:2167–2178

    Article  CAS  Google Scholar 

  47. Piet JJ, Schuddeboom W, Wegewijs BR, Grozema FC, Warman JM (2001) Symmetry breaking in the relaxed S1 excited state of bianthryl derivatives in weakly polar solvents. J Am Chem Soc 123:5337–5347

    Article  CAS  PubMed  Google Scholar 

  48. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  49. Prendergast FG (1991) Time-resolved fluorescence techniques: method and application in biology. Curr Opin Struct Biol 1:1054–1059

    Article  CAS  Google Scholar 

  50. Chattopadhyay A, Mukherjee S, Raghuraman H (2002) Reverse micellar organization and dynamics: a wavelength-selective fluorescence approach. J Phys Chem B 106:13002–13009

    Article  CAS  Google Scholar 

  51. Bhattacharyya K, Chowdhury M (1993) Environmental and magnetic field effects on exciplex and twisted charge transfer emission. Chem Rev 93:507–535

    Article  CAS  Google Scholar 

  52. Kundu S, Bera SC, Chattopadhyay N (1998) Twisted intramolecular charge transfer of DMABA in cyclodextrin environments. Ind J Chem A 37:102–108

    Google Scholar 

Download references

Acknowledgments

Financial support from the Council of Scientific and Industrial Research, Government of India (Project No. 01/(2807)/14/EMR-II), is gratefully acknowledged. P.K. and S.G. thank Council of Scientific and Industrial Research and University Grants Commission respectively for their research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Chattopadhyay.

Additional information

Highlights

• Structural impact on the photophysics of synthesized benzoquinolines is studied• Drastic modification in the photophysics results upon dehydrogenation• Dihydrobenzoquinolines give dual emissions for the normal and the ICT species• The ICT species is formed in the ground as well as in the photoexcited states • Dehydrogenation in the heterocyclic ring leads to suppression of the ICT emission

Electronic Supplementary Material

ESM 1

(DOC 3069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, P., Ghosh, S., Karmakar, R. et al. Impact of Structural Modification on the Photophysical Response of Benzoquinoline Fluorophores. J Fluoresc 26, 845–854 (2016). https://doi.org/10.1007/s10895-016-1772-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1772-9

Keywords

Navigation