Journal of Fluorescence

, Volume 26, Issue 3, pp 791–806 | Cite as

PL Properties of Sr2CeO4 With Eu3+ and Dy3+ for Solid State Lighting Prepared by Precipitation Method



Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+ = 0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+ = 1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.


Sr2CeO4 Sr2CeO4 with RE (Eu3+and Dy3+Nanophosphors PL XRD SEM FTIR Near UV and blue LED Solid state lighting 



One of the authors R. S. Ukare is very much thankful to University Grant Commission, Pune, for providing financial grant under Faculty Development Programme (FDP).


  1. 1.
    Fu S-L, Yin T, Chi F (2007) Chin Phys 16(10):3129–3133CrossRefGoogle Scholar
  2. 2.
    Zambare PZ, Girase KD, Murthy KVR, Mahajan OH (2013) Adv Mat Lett 4(7):577–581Google Scholar
  3. 3.
    Li H et al (2014) Opt Mater 36:1883–1889CrossRefGoogle Scholar
  4. 4.
    Danielson E, Devenney M, Giaquinta DM, Golden JH, Haushalter RC, McFarland EW, Poojary DM, Reaves CM, Weinberg (1998) Science 279:837–839CrossRefPubMedGoogle Scholar
  5. 5.
    Seema R, Nandakumar K (2011) A New synthetic pathway of Sr2CeO4 phosphor and its characterization. J Lumin 131:2181–2184CrossRefGoogle Scholar
  6. 6.
    Sukwon J, Yun Chan K, Jung Hyeun K (2007) J Mater Sci 42:9783–9794CrossRefGoogle Scholar
  7. 7.
    Suresh K,Poornachandra Rao NV and Murthy KVR (2014) Bull. Mater. Sci., Vol. 37, No. 6, pp. 1191–1195, Indian Academy of SciencesGoogle Scholar
  8. 8.
    Zambare PZ, Zambare AP, Murthy KVR, Mahajan OH (2011) Ad Applied Sci Res 2(3):520–524Google Scholar
  9. 9.
    Walter Ratna Kumar B, Murthy KVR, Subba Rao B and Mahamuda Shaik IJSID1 (2011) (2), 145–150Google Scholar
  10. 10.
    Yeon woo et al. (2015) Ceramic International 41 1249–1254Google Scholar
  11. 11.
    Xue S-W, Wang E-G, Zhang JC (2011) Phys B 20(7):078105–078108Google Scholar
  12. 12.
    Masalove AA, Vyagin OG, Ganina II, Malyukin YV (2008) Funct Mater 15(4):470–474Google Scholar
  13. 13.
    Zhang C, Shi J, Yang X, Lu L, Wang X (2010) J Rare Earths 28(4):513–518CrossRefGoogle Scholar
  14. 14.
    Takyuki H, Yusuke K (2004) J Phys Chem B 108(34):12763–12769CrossRefGoogle Scholar
  15. 15.
    Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Mater Sci Eng R 71:1–34CrossRefGoogle Scholar
  16. 16.
    San Jose (2013) CA 95134 USA,LED Engine, 651 River Oaks Parkway, sales@ledengine.comGoogle Scholar
  17. 17.
    Na Z, Wang D, Lan L, Yanshuang M, Xiaosang Z, Ming N (2006) J Rare Earth 24:294–297CrossRefGoogle Scholar
  18. 18.
    Xu Y, Chen L, Li Y, Song G, Wang Y, Zhuang W, Long Z (2008) Appl Phys Lett 92:021129CrossRefGoogle Scholar
  19. 19.
    Yan W, Yuhua W, Feng Z, Bitao L (2011) Mater Chem Phys 129:1171–1175CrossRefGoogle Scholar
  20. 20.
    Pawade VB, Dhobale NS, Dhobale SJ (2012) Solid State Sci 14:607–610CrossRefGoogle Scholar
  21. 21.
    Pawade VB and Dhobale SJ (2011) The J. of biological and Chemical LuminescenceGoogle Scholar
  22. 22.
    Bizari G, and Moine B (2006) Optical Material, 587–591Google Scholar
  23. 23.
    Zhu H, Yang H, Fu W, Zhu P, Li M, Li Y, Sui Y, Liu S, Zou G (2008) Mater Lett 62:784–786CrossRefGoogle Scholar
  24. 24.
    Matolin V, Matolinova I, Sadlacek L, Prince KC, Skala T (2009) Nanotechnology 20:1–7CrossRefGoogle Scholar
  25. 25.
    Ferrar JL, Pires AM, Serra OA, Davolos MR (2011) J Lumin 131:25–29CrossRefGoogle Scholar
  26. 26.
    Sankara R, Subba Rao GV (2011) J Electrochem Soc 158(10):J287–J290CrossRefGoogle Scholar
  27. 27.
    Suresh K et al (2013) J Lumin 133:96–101CrossRefGoogle Scholar
  28. 28.
    Lili S, Hongiie Z, Li C, Qiang S (2011) RSC Adv 1:298–304CrossRefGoogle Scholar
  29. 29.
    Haiyan JIAO, Yuhua WANG, Jiachi ZHANG (2009) J Phys Conf Ser 152:012089CrossRefGoogle Scholar
  30. 30.
    Shinoya M and Yen W M (1999) Phosphor HandBook CRC Press Boca RatonGoogle Scholar
  31. 31.
    Choi S-H, Kim N-H, Yang- Hoon Y, Sung-Churl C (2006) J Cer Proc Res 7(1):62–65Google Scholar
  32. 32.
    Jiang YD, Zhang F, Summers CJ (1999) Appl Phys Lett 74:1677CrossRefGoogle Scholar
  33. 33.
    Xing D, Gong ML, Qui X, Yang D, Cheah Kok W (2006) J Rare Earth 24:289–293CrossRefGoogle Scholar
  34. 34.
    Shriver DF, Akins PW, Langford CH (1990) Inorganic chemistry, WH. Freeman and company, New York, NYGoogle Scholar
  35. 35.
    Jie L, Xi L, Hu S, Yingchun L, Yuying H (2013) Opt Mater 35:2309–2313CrossRefGoogle Scholar
  36. 36.
    Aitasalo T, Holsa J, Lastusaari M, Niityykoski J, Pelle F (2005) Optic Mater 27:1511CrossRefGoogle Scholar
  37. 37.
    Paulose PI, Jose G, Thomas V et al (2003) J Phys Chem Solids 64:841CrossRefGoogle Scholar
  38. 38.
    Yang W, Chen T (2007) Appl Phys Lett 90:171908CrossRefGoogle Scholar
  39. 39.
    Kim Anha T, Strek W (1988) J Lumin 42:205CrossRefGoogle Scholar
  40. 40.
    Kim JS, Jeon PE, Park YH, Choi JC, Park HL (2004) Appl Phys Lett 85(17):3696CrossRefGoogle Scholar
  41. 41.
    Fraser J. Douglas,a Carlos Renero-Lecuna, Robert D. Peacock, Rafael Valiente, Donald A. MacLarenc and Mark Murriea (2012) Electronic Supplementary Material (ESI) for CrystEngComm, the Royal Society of ChemistryGoogle Scholar
  42. 42.
    Haifeng L et al (2015) Mater Lett 139:258–261CrossRefGoogle Scholar
  43. 43.
    Som S, Kunti AK, Vinod K, Vijay K, Dutta S, Chowdhury M, Sharma SK, Terblans JJ, Swart HC (2014) J Appl Phys 115:193101CrossRefGoogle Scholar
  44. 44.
    Huang K-W, Chen W-T, Chu C-I, Hu S-F, Sheu H-S, Cheng B-M, Chen J-M, Liu R-S (2012) Chem Mater 24:2220CrossRefGoogle Scholar
  45. 45.
    Dalton Trans (2014) 43, 8814Google Scholar
  46. 46.
    RSC Advances (2012) 2 10859–10868Google Scholar
  47. 47.
    Condon SU, Shortley GH (1963) The theory of atomic spectra. Cambridge University Press, EnglandGoogle Scholar
  48. 48.
    Dutta S, Som S, Sharma SK (2013) Dalton Trans 42:9654CrossRefPubMedGoogle Scholar
  49. 49.
    Dexter DL (1953) J Chem Phys 21:836CrossRefGoogle Scholar
  50. 50.
    Dubey V, Kaur J, Agrawal S (2014) Res. Chem. Intermed.  10.1007/s11164-014-1563-3
  51. 51.
    Fang Y-C, Chu S-Y, Kao P-C, Chuang Y-M, Zeng Z-L (2011) J Electrochem Soc 158:J1CrossRefGoogle Scholar
  52. 52.
    Hehlen MP, Brik MG, Kramer KW (2013) J Lumin 136:221–239CrossRefGoogle Scholar
  53. 53.
    Agrawal S, Dubey V (2014) Jour Rad Res Appl Sci 7(4):601–606Google Scholar
  54. 54.
    Dubey V, Kaur J, Agrawal S (2014) Res Chem Intermed. doi: 10.1007/s11164-014-1563-3
  55. 55.
    Dubey V, Kaur J, Agrawal S, Suryanarayana NS, Murthy KVR (2014) Superlat Microstruc 67:156–171Google Scholar
  56. 56.
    Kaur J, Parganiha Y, Dubey V, Singh D, Chandrakar D (2014) Superlat Microstruc 73:38–53Google Scholar
  57. 57.
    Dubey V, Kaur J, Agrawal S, Suryanarayana NS, Murthy KVR (2013) Optik – Int. J.Light Electron Opt. doi: 10.1016/j.ijleo.2013.03.153
  58. 58.
    Parganiha Y, Kaur J, Dubey V, Murthy KVR (2015) Mater Sci Semicond Process 31:715–719Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsC.J. Patel College TiroraDist. GondiaIndia
  2. 2.Department of PhysicsBhilai Institute of TechnologyRaipurIndia
  3. 3.J.N. Art’sCommerce and Science College WadiNagpurIndia
  4. 4.Department of PhysicsR.T.M. Nagpur UniversityNagpurIndia

Personalised recommendations