Skip to main content
Log in

Transmittance and Autofluorescence of Neonatal Rat Stratum Corneum: Nerolidol Increases the Dynamics and Partitioning of Protoporphyrin IX into Intercellular Membranes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work, we developed an experimental apparatus to directly measure transmittance and fluorescence in the stratum corneum (SC) ex vivo. The SC transmittance varied from ~6 to ~52 % in the wavelength range of 280–850 nm. For 260–300 nm excitation, the SC autofluorescence showed a strong emission band between 290 and 425 nm, which is associated with tryptophan, and another in the 600–670 nm range, which we attributed to a process involving resonance energy transfer to very hydrophobic keratin filaments. Weaker emission associated with less hydrophobic keratin filaments was also observed in the wavelength range of 350–480 nm. Protoporphyrin IX (PpIX) was incorporated into SC membranes, and its penetration was further increased by the addition of nerolidol to the treatment suspension. Both PpIX and the endogenous porphyrins showed fluorescence anisotropy consistent with their localization in SC membranes, and their molecular dynamics increased significantly in the presence of 1 % nerolidol. The emission and excitation spectra of PpIX and the endogenous SC porphyrins showed similar alterations during the photobleaching induced by 405-nm irradiation. This work also highlights the SC contribution to skin autofluorescence, which could be useful for fluorescence spectroscopy applications in the early diagnosis of skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Borisova EG, Angelova LP, Pavlova EP (2014) Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications. IEEE J of Selected Topics in Quantum Electronics 20(2). doi:10.1109/JSTQE.2013.2280503

  2. Wertz PW, Downing DT (1987) Covalently bound Ω-hydroxyacylsphingosine in the stratum corneum. Biochim Biophys Acta 917:108–111

    Article  CAS  PubMed  Google Scholar 

  3. Hohl D (1990) Cornified cell envelope. Dermatologica 180:201–221

    Article  CAS  PubMed  Google Scholar 

  4. Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42:1–36

    Article  CAS  PubMed  Google Scholar 

  5. Wertz PW, Madison KC, Downing DT (1989) Covalently bound lipids of human stratum corneum. J Investig Dermatol 92:109–111

    Article  CAS  PubMed  Google Scholar 

  6. Swartzendruber DC, Wertz PW, Madison KC, Downing DT (1987) Evidence that the corneocyte has a chemically bound lipid envelope. J Investig Dermatol 88:709–713

    Article  CAS  PubMed  Google Scholar 

  7. Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56:603–618

    Article  CAS  PubMed  Google Scholar 

  8. Alonso A, Meirelles NC, Tabak M (1995) Effect of hydration upon the fluidity of intercellular membranes of stratum corneum: an EPR study. Biochim Biophys Acta 1237:6–15

    Article  PubMed  Google Scholar 

  9. Alonso A, Meirelles NC, Yushmanov VE, Tabak M (1996) Water increases the fluidity of intercellular membranes of stratum corneum: correlation with water permeability, elastic, and electrical properties. J Investig Dermatol 106:1058–1063

    Article  CAS  PubMed  Google Scholar 

  10. Dos Anjos JLV, Neto DD, Alonso A (2007) Effect of ethanol/L-menthol on the dynamics and partitioning of spin-labeled lipids in the stratum corneum. Eur J Pharm Biopharm 67:406–412

    Article  PubMed  Google Scholar 

  11. Dos Anjos JLV, Neto DS, Alonso A (2007) Effects of 1, 8-cineole on the dynamics of lipids and proteins of stratum corneum. Int J Pharm 345:81–87

    Article  Google Scholar 

  12. Dos Anjos JLV, Alonso A (2008) Terpenes increase the partitioning and molecular dynamics of an amphipathic spin label in stratum corneum membranes. Int J Pharm 350:103–112

    Article  PubMed  Google Scholar 

  13. Camargos HS, Silva AHM, Anjos JLV, Alonso A (2010) Molecular dynamics and partitioning of di-tert-butyl nitroxide in stratum corneum membranes: effect of terpenes. Lipids 45:419–427

    Article  CAS  PubMed  Google Scholar 

  14. Aktar B, Erdal MS, Sagirli O, Güngör S, Özsoy Y (2014) Optimization of biopolymer based transdermal films of metoclopramide as an alternative delivery approach. Polymers 6:1350–1365. doi:10.3390/polym6051350

    Article  Google Scholar 

  15. Can AS, Erdal MS, Güngör S, Özsoy Y (2013) Optimization and characterization of chitosan films for transdermal delivery of ondansetron. Molecules 18(5):5455–5471

    Article  CAS  PubMed  Google Scholar 

  16. Ferreira FM, Palmeira CM, Oliveira MM, Santos D, Simões AM, Rocha SM, Coimbra MA, Peixoto F (2012) Nerolidol effects on mitocondrial and cellular energetics. Toxicology. In Vitro 26:189–196. doi:10.3390/molecules18055455

    Article  CAS  Google Scholar 

  17. Tao R, Wang CZ, Kong ZW (2013) Antibacterial/antifungal activity and synergistic interactions between polyprenols and other lipids isolated from Ginkgo biloba L. Leaves Molecules 18(2):2166–2182. doi:10.3390/molecules18022166

    Article  CAS  PubMed  Google Scholar 

  18. Arruda D, Katzin A, Uliana S (2005) Antileishmanial activity of the terpene nerolidol. Antimicrob Agents Chemother 49:1679–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Camargos HS, Moreira RA, Mendanha SA, Fernandes KS, Dorta ML, Alonso A (2014) Terpenes increase the lipid dynamics in the leishmania plasma membrane at concentrations similar to their IC50 values. PLoS One 9:e104429. doi:10.1371/journal.pone.0104429

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alonso A, Da Silva JV, Tabak M (2003) Hydration effects on the protein dynamics in stratum corneum as evaluated by EPR spectroscopy. Biochim Biophys Acta 1646:32–41

    Article  CAS  PubMed  Google Scholar 

  21. Lakowicz JR (2006) In principles of fluorescence spectroscopy, Third edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  22. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14:12222–12248. doi:10.3390/ijms140612222

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ikehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res 52:115–225

    Article  CAS  PubMed  Google Scholar 

  24. Scheuplein RJ (1964) A survey of some fundamental aspects of the absorption and reflection of light by tissue. J Soc Cosmet Chem 15:111–122

    Google Scholar 

  25. Anderson RR, Parrish JA (1981) The optics of human skin. J Investig Dermatol 77:13–19

    Article  CAS  PubMed  Google Scholar 

  26. van Gemert MJ, Jacques SL, Sterenborg HJ, Star WM (1989) Skin optics. IEEE Trans Biomed Eng 36:1146–1154

    Article  PubMed  Google Scholar 

  27. Karsten AE, Smit JE (2012) Modeling and verification of melanin concentration on human skin type. Photochem Photobiol 88:469–474. doi:10.1111/j.1751-1097.2011.01044.x

    Article  CAS  PubMed  Google Scholar 

  28. Bouwstra JA, Gooris GS, van der Spek JA, Bras W (1991) Structural investigations of human stratum corneum by small angle X-ray scattering. J Investig Dermatol 97:1005–1012

    Article  CAS  PubMed  Google Scholar 

  29. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Ver Mol Cell Biol 6:328–340

    Article  CAS  Google Scholar 

  30. Pena A, Strupler M, Boulesteix T, Schanne-Klein M (2005) Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy. Opt Express 13:6268–6274

    Article  CAS  PubMed  Google Scholar 

  31. Na R, Stender IM, Ma L, Wulf HC (2000) Autofluorescence spectrum of skin: component bands and body site variations. Skin Res Technol 6(3):112–117

    Article  PubMed  Google Scholar 

  32. Na R, Stender IM, Wulf HC (2001) Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence. Acta Derm Venereol 81:246–249

    Article  CAS  PubMed  Google Scholar 

  33. Kepczyński M, Pandian RP, Smith KM, Ehrenberg B (2002) Do liposome-binding constants of porphyrins correlate with their measured and predicted partitioning between octanol and water? Photochem Photobiol 76(2):127–134

    Article  PubMed  Google Scholar 

  34. Lavi A, Weitman H, Holmes RT, Smith KM, Ehrenberg B (2002) The depth of porphyrin in a membrane and the membrane's physical properties affect the photosensitizing efficiency. Biophys J 82(4):2101–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ito AS, Rodrigues AP, Pazin WM, Barioni MB (2015) Fluorescence depolarization analysis of thermal phase transition in DPPC and DMPG aqueous dispersions. J Lumin 158:153–159. doi:10.1016/j.jlumin.2014.09.051

    Article  CAS  Google Scholar 

  36. Ibrahim H, Kasselouri A, You C, Maillard P, Rosilio V, Pansu R, Prognon P (2011) Meso-tetraphenyl porphyrin derivatives: the effect of structural modifications on binding to DMPC liposomes and albumin. J Photochem Photobiol A Chem 217:10–21. doi:10.1016/j.jphotochem.2010.09.008

    Article  CAS  Google Scholar 

  37. Mendanha SA, Moura SS, Anjos JLV, Valadares MC, Alonso A (2013) Toxicity of terpenes on fibroblast cells compared to their hemolytic potential and increase in erythrocyte membrane fluidity. Toxicol in Vitro 27:323–329

    Article  CAS  PubMed  Google Scholar 

  38. Mendanha SA, Alonso A (2015) Effects of terpenes on fluidity and lipid extraction in phospholipid membranes. Biophys Chem 198:45–54

    Article  CAS  PubMed  Google Scholar 

  39. Marcelli A, Jelovica Badovinac I, Orlic N, Salvi PR, Gellini C (2013) Excited-state absorption and ultrafast relaxation dynamics of protoporphyrin IX and hemin. Photochem Photobiol Sci 12:348–355. doi:10.1039/c2pp25247c

    Article  CAS  PubMed  Google Scholar 

  40. Moreira RA, Mendanha SA, Fernandes KS, Matos GG, Alonso L, Dorta ML, Alonso A (2014) Miltefosine increases lipid and protein dynamics in leishmania amazonensis membranes at concentrations similar to those needed for cytotoxicity activity. Antimicrob Agents Chemother 58(6):3021–3028

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian research funding agencies CNPq, FAPEG and CAPES. L. Alonso acknowledges CAPES for doctoral fellowship support. P. J. Gonçalves and A. Alonso gratefully acknowledge CNPq for research grants. The authors also thank Dr. Jesiel F. Carvalho, Dr. Renata M. Pereira and Dr. Lauro J. Q. Maia for their assistance with instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Alonso.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, L., Marquezin, C.A., Gonçalves, P.J. et al. Transmittance and Autofluorescence of Neonatal Rat Stratum Corneum: Nerolidol Increases the Dynamics and Partitioning of Protoporphyrin IX into Intercellular Membranes. J Fluoresc 26, 709–717 (2016). https://doi.org/10.1007/s10895-015-1758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1758-z

Keywords

Navigation