Journal of Fluorescence

, Volume 26, Issue 2, pp 395–401 | Cite as

Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range

  • P. S. Hariharan
  • J. Pitchaimani
  • Vedichi Madhu
  • Savarimuthu Philip Anthony


Water soluble perylenediimide based fluorophore salt, N,N′-bis(ethelenetrimethyl ammoniumiodide)-perylene-3,4,9,10-tetracarboxylicbisimide (PDI-1), has been used for selective fluorescence sensing of picric acid (PA) and 4-nitroaniline (4-NA) in organic as well as aqueous medium across wide pH range (1.0 to 10.0). PDI-1 showed strong fluorescence in dimethylformamide (DMF) (Φf = 0.26 (DMF) and moderate fluorescence in water. Addition of picric acid (PA) and 4-nitroaniline (4-NA) into PDI-1 in DMF/aqueous solution selectively quenches the fluorescence. The concentration dependent studies showed decrease of fluorescence linearly with increase of PA and 4-NA concentration. The interference studies demonstrate high selectivity for PA and 4-NA. Interestingly, PDI-1 showed selective fluorescence sensing of PA and 4-NA across wide pH range (1.0 to 10.0). Selective fluorescence sensing of PA and 4-NA has also been observed with trifluoroacetate (PDI-2), sulfate (PDI-3) salt of PDI-1 as well as octyl chain substituted PDI (PDI-4) without amine functionality. These studies suggest that PA and 4-NA might be having preferential interaction with PDI aromatic core and quenches the fluorescence. Thus PDI based dyes have been used for selective fluorescent sensing of explosive NACs for the first time to the best our knowledge.

Graphical Abstract

Selective fluorescent sensing of picric acid and 4-nitroaniline nitroaromatic compounds by perylene diimide fluorescent dyes


Perylene diimide Fluorescent sensor Explosive sensor Picric acid sensor 



Financial support from the Department of Science and Technology, New Delhi, India (DST Fast Track scheme no. SR/FT/CS-03/2011(G), SB/FT/CS-182/2011) is acknowledged with gratitude. We thank CRF, SASTRA University for UV-Visible spectrophotometer. The authors gratefully acknowledge the modern lab facility by Karunya University.

Supplementary material

10895_2015_1725_MOESM1_ESM.docx (2 mb)
ESM 1 (DOCX 2005 kb)


  1. 1.
    McDonagh C, Burke CS, MacCraith BD (2008) Chem Rev 108:400CrossRefPubMedGoogle Scholar
  2. 2.
    Valeur B, Leray I (2000) Coord Chem Rev 205:3CrossRefGoogle Scholar
  3. 3.
    Qian X, Xiao Y, Xu Y, Guo XF, Qian J, Zhu W (2010) Chem Commun 46:6418CrossRefGoogle Scholar
  4. 4.
    Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) Chem Rev 110:2620CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kim JS, Quang DT (2007) Chem Rev 107:3780CrossRefPubMedGoogle Scholar
  6. 6.
    Nolan EM, Lippard SJ (2009) Acc Chem Res 42:193CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim HN, Ren WX, Kim JS, Yoon J (2012) Chem Soc Rev 41:3210CrossRefPubMedGoogle Scholar
  8. 8.
    Anthony SP (2012) Chem Asian J 7:374CrossRefPubMedGoogle Scholar
  9. 9.
    Liu Z, Qi Y, Guo C, Zhao Y, Yang X, Pei M, Zhang G (2014) RSC Adv 4:56863CrossRefGoogle Scholar
  10. 10.
    Hariharan PS, Anthony SP (2014) RSC Adv 4:41565CrossRefGoogle Scholar
  11. 11.
    Dhanunjayarao K, Mukundam V, Venkatasubbaiah K (2014) J Mater Chem C 2:8599CrossRefGoogle Scholar
  12. 12.
    Zhang S, Fan J, Zhang S, Wang J, Wang X, Du J, Peng X (2014) Chem Commun 50:14021CrossRefGoogle Scholar
  13. 13.
    Wang Y, La A, Ding Y, Liu Y, Lei Y (2012) Adv Funct Mater 22:3547CrossRefGoogle Scholar
  14. 14.
    Ju K-S, Parales RE (2010) Mol Biol Rev 74:250CrossRefGoogle Scholar
  15. 15.
    Akhavan J (2011) The chemistry of explosives, 3rd edn. Royal Society of Chemistry, CambridgeGoogle Scholar
  16. 16.
    Muthurajan H, Sivabalan R, Talawar MB, Asthana SN (2004) J Hazard Mater 112:17CrossRefPubMedGoogle Scholar
  17. 17.
    Volwiler EH (1926) Ind Eng Chem 18:1336CrossRefGoogle Scholar
  18. 18.
    Bhalla V, Arora H, Singh H, Kumar M (2013) Dalton Trans 42:969CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang S, Ding L, Lü F, Liu T, Fang Y (2012) Spectrochim Acta A 97:31CrossRefGoogle Scholar
  20. 20.
    Wyman JF, Serve MP, Hobson DW, Lee LH, Uddin J (1992) Safety data sheet for picric acid, resource of National Institute of Health. Toxicol Environ Health Part A 37:313Google Scholar
  21. 21.
    Pimienta V, Etchenique R, Buhse T (2001) J Phys Chem A 105:10037CrossRefGoogle Scholar
  22. 22.
    Shen J, Zhang J, Zuo Y, Wang L, Sun X, Li J, Han W, He R (2009) J Hazard Mater 163:1199CrossRefPubMedGoogle Scholar
  23. 23.
    Shanmugaraju S, Joshi SA, Mukherjee PS (2011) J Mater Chem 21:9130CrossRefGoogle Scholar
  24. 24.
    Albert KJ, Wal DR (2000) Anal Chem 72:1947CrossRefPubMedGoogle Scholar
  25. 25.
    Rose A, Zhu ZG, Madigan CF, Swager TM, Bulovic V (2005) Nature 434:876CrossRefPubMedGoogle Scholar
  26. 26.
    Monteil-Rivera F, Beaulieu C, Deschamps S, Paquet L, Hawari J (2004) J Chromatogr A 1048:213CrossRefPubMedGoogle Scholar
  27. 27.
    Charles PT, Kusterbeck AW (1999) Biosens Bioelectron 14:387CrossRefPubMedGoogle Scholar
  28. 28.
    Desmet C, Blum LJ, Marquette CA (2012) Anal Chem 84:10267CrossRefPubMedGoogle Scholar
  29. 29.
    Xu Y, Li B, Li W, Zhao J, Sun S, Pang Y (2013) Chem Commun 49:4764CrossRefGoogle Scholar
  30. 30.
    Meaney MS, McGuffin VL (2008) Anal Chim Acta 610:57CrossRefPubMedGoogle Scholar
  31. 31.
    Bhalla V, Gupta A, Kumar M, Rao DSS, Prasad SK (2013) ACS Appl Mater Interfaces 5:672CrossRefPubMedGoogle Scholar
  32. 32.
    Peng Y, Zhang A-J, Dong M, Wang Y-W (2011) Chem Commun 47:4505CrossRefGoogle Scholar
  33. 33.
    Madhu S, Bandela A, Ravikanth M (2014) RSC Adv 4:7120CrossRefGoogle Scholar
  34. 34.
    Wurthner F (2004) Chem Commun, 1564Google Scholar
  35. 35.
    Huang C, Barlow S, Marder SR (2011) J Org Chem 76:2386CrossRefPubMedGoogle Scholar
  36. 36.
    Ahrens MJ, Fuller MJ, Wasielewski MR (2003) Chem Mater 15:2684CrossRefGoogle Scholar
  37. 37.
    Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend RH, MacKenzie JD (2001) Science 293:1119CrossRefPubMedGoogle Scholar
  38. 38.
    Marcia M, Singh P, Hauke F, Maggini M, Hirsch A (2014) Org Biomol Chem 12:7045CrossRefPubMedGoogle Scholar
  39. 39.
    He X, Liu H, Li Y, Wang S, Li Y, Wang N, Xiao J, Xu X, Zhu D (2005) Adv Mater 17:2811CrossRefGoogle Scholar
  40. 40.
    Feng LH, Chen ZB (2007) Sens Actuators, B 122:600CrossRefGoogle Scholar
  41. 41.
    Ruan Y-B, Li A-F, Zhao J-S, Shen J-S, Jiang Y-B (2010) Chem Commun 46:4938CrossRefGoogle Scholar
  42. 42.
    Li J, Wu Y, Song F, Wei G, Cheng Y, Zhu C (2012) J Mater Chem 22:478CrossRefGoogle Scholar
  43. 43.
    Wang B, Wang F, Jiao H, Yang X, Yu C (2010) Analyst 135:1986CrossRefPubMedGoogle Scholar
  44. 44.
    Feng X, An Y, Yao Z, Li C, Shi G (2012) ACS Appl Mater Interfaces 4:614CrossRefPubMedGoogle Scholar
  45. 45.
    Ajayakumar MR, Mukhopadhyay P, Yadav S, Ghosh S (2010) Org Lett 12:2646CrossRefPubMedGoogle Scholar
  46. 46.
    Singh P, Mittal LS, Vanita V, Kumar R, Bhargava G, Wali A, Kumar S (2014) Chem Commun 50:13994CrossRefGoogle Scholar
  47. 47.
    Deligeorgiev T, Zaneva D, Petkov I (1994) Dyes Pigments 24:75CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Chemical & BiotechnologySASTRA UniversityThanjavurIndia
  2. 2.School of Science and Humanities, Department of ChemistryKarunya UniversityCoimbatoreIndia

Personalised recommendations