Skip to main content
Log in

Synthesis, Characterization, Properties and DFT Calculations of 2-(Benzo[b]thiophen-2-yl)pyridine-based Iridium(III) Complexes with Different Ancillary Ligands

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A series of new cyclometalated btp-based iridium(III) complexes with three different ancillary ligands, Ir(btp)2(bozp) (3a), Ir(btp)2(btzp) (3b) and Ir(btp)2(izp) (3c) (btp = 2-(benzo[b]thiophen-2-yl)pyridine, bozp =2-(benzo[d]oxazol-2-yl)phenol, btzp =2-(benzo[d]thiazol-2-yl)phenol, izp = 2-(2 H-indazol-2-yl)phenol), have been synthesized and fully characterized. The crystal structure of 3b has been determined by single crystal X-ray diffraction analysis. A comparative study has been carried out for complexes 3a − 3c by UV-vis absorption spectroscopy, photoluminescence spectroscopy, cyclic voltammetry and DFT calculations. This observation illustrates that the substitution of N or S in ancillary ligand can lead to a marked bathochromic shift of absorption and emission wavelengths. The spectroscopic characterisation of these complexes has been complemented by DFT and TD-DFT calculations, supporting the assignment of 3MLCT/3LC to the lowest energy excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baldo MA, Adachi C, Forrest SR (2000) Transient analysis of organic electrophosphorescence. II. Transientanalysis of triplet-triplet annihilation. Phys Rev B 62:10967–10977

    Article  CAS  Google Scholar 

  2. Wu C, Chen HF, Wong KT, Thompson ME (2010) Study of ion-paired iridium complexes (soft salts) and their application in organic light emitting diodes. J Am Chem Soc 132:3133–3139

    Article  PubMed  CAS  Google Scholar 

  3. Lupton JM, Samuel IDW, Frampton MJ, Beavington R, Burn PL (2001) Control of electrophosphorescence in conjugated dendrimer light-emitting diodes. Adv Funct Mater 11:287–294

    Article  CAS  Google Scholar 

  4. Niu ZG, Liu D, Zuo J, Zou Y, Yang JM, Su YH, Yang YD, Li GN (2014) Four new cyclometalated phenylisoquinoline-based Ir(III) complexes: syntheses, structures, properties and DFT calculations. Inorg Chem Commun 43:146–150

    Article  CAS  Google Scholar 

  5. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc 123:4304–4312

    Article  PubMed  CAS  Google Scholar 

  6. Chen LQ, Yang CL, Qin JG, Gao J, Ma DG (2006) Tuning of emission: synthesis, structure and photophysical properties of imidazole, oxazole and thiazole-based iridium (III) complexes. Inorg Chim Acta 359:4207–4214

    Article  CAS  Google Scholar 

  7. Zhao Q, Jiang CY, Shi M, Li FY, Yi T, Cao Y, Huang CH (2006) Synthesis and photophysical, electrochemical, and electrophosphorescent properties of a series of iridium(III) complexes based on quinoline derivatives and different β-diketonate ligands. Organometallics 25:3631–3638

    Article  CAS  Google Scholar 

  8. Li YF, Liu Y, Zhou M (2012) Acid induced acetylacetonato replacement in biscyclometalated iridium(III) complexes. Dalton Trans 41:3807–3816

    Article  PubMed  CAS  Google Scholar 

  9. Hay PJ (2002) Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory. J Phys Chem A 106:1634–1641

    Article  CAS  Google Scholar 

  10. Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc 125:7377–7387

    Article  PubMed  CAS  Google Scholar 

  11. Sharma S, Kim H, Lee YH, Kim T, Lee YS, Lee MH (2014) Heteroleptic cyclometalated iridium(III) complexes supported by triarylborylpicolinate ligand: ratiometric turn-on phosphorescence response upon fluoride binding. Inorg Chem 53:8672–8680

    Article  PubMed  CAS  Google Scholar 

  12. Li GN, Zou Y, Yang YD, Liang J, Cui F, Zheng T, Xie H, Niu ZG (2014) Deep-red phosphorescent iridium(III) complexes containing 1-(benzo[b] thiophen-2-yl) isoquinoline ligand: synthesis, photophysical and electrochemical properties and DFT calculations. J Fluoresc 24:1545–1552

    Article  PubMed  CAS  Google Scholar 

  13. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Vonzelewsky A (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277

    Article  CAS  Google Scholar 

  14. Frank M, Nieger M, Vögtle F, Belser P, Vonzelewsky A, Cola LD, Balzani V, Barigelletti F, Flamigni L (1996) Dinuclear RuII and/or OsII complexes of bis-bipyridine bridging ligands containing adamantane spacers: synthesis, luminescence properties, intercomponent energy and electron transfer processes. Inorg Chim Acta 242:281–291

    Article  CAS  Google Scholar 

  15. Oh H, Park KM, Hwang H, Oh S, Lee JH, Lu JS, Wang S, Kang Y (2013) Effective alkoxylation of phosphorescent heteroleptic iridium(III) compounds bearing fluorinated bipyridine ligands. Organometallics 32:6427–6436

    Article  CAS  Google Scholar 

  16. CrysAlisPro Version 1.171.36.21. (2012) Agilent technologies Inc. Santa Clara, CA

    Google Scholar 

  17. Sheldrick GM (2008) A short history of SHELX. Acta Cryst Sect A 64:112–122

    Article  CAS  Google Scholar 

  18. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision A.01. Wallingford, Gaussian, Inc.

    Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  22. Becke AD (1993) Density-functional thermochemistry.III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  PubMed  CAS  Google Scholar 

  24. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  PubMed  CAS  Google Scholar 

  25. Jiang N, Yang CL, Dong XW, Sun XL, Dan Z, Liu CL (2014) An ESIPT fluorescent probe sensitive to protein α-helix structures. Org Biomol Chem 12:5250–5259

    Article  PubMed  CAS  Google Scholar 

  26. Khan KM, Rahim F, Halim SA, Taha M, Khan M, Perveen S, Haq Z, Mesaik MA, Choudhary MI (2011) Synthesis of novel inhibitors of β-glucuronidase based on benzothiazole skeleton and study of their binding affinity by molecular docking. Bioorg Med Chem 19:4286–4294

    Article  PubMed  CAS  Google Scholar 

  27. Varughese DJ, Manhas MS, Bose AK (2006) Microwave enhanced greener synthesis of indazoles via nitrenes. Tetrahedron Lett 47:6795–6797

    Article  CAS  Google Scholar 

  28. Neve F, La Deda M, Crispini A, Bellusci A, Puntoriero F, Campagna S (2004) Cationic cyclometalated iridium luminophores: photophysical, redox, and structural characterization. Organometallics 23:5856–5863

    Article  CAS  Google Scholar 

  29. Wang RJ, Deng LJ, Zhang T, Li JY (2012) Substituent effect on the photophysical properties, electrochemical properties and electroluminescence performance of orange-emitting iridium complexes. Dalton Trans 41:6833–6841

    Article  PubMed  CAS  Google Scholar 

  30. Okada S, Okinaka K, Iwawaki H, Furugori M, Hashimoto M, Mukaide T, Kamatani J, Igawa S, Tsuboyama A, Takiguchi T, Ueno K (2005) Substituent effects of iridium complexes for highly efficient red OLEDs. Dalton Trans 9:1583–1590

    Article  PubMed  Google Scholar 

  31. Zhang LY, Liu GF, Zheng SL, Ye BH, Zhang XM, Chen XM (2003) Helical ribbons of cadmium(II) and zinc(II) dicarboxylates with bipyridyl-like chelates − syntheses, crystal structures and photoluminescence. Eur J Inorg Chem 2003:2965–2971

    Article  Google Scholar 

  32. Wu FI, Su HJ, Shu CF, Luo LY, Diau WG, Cheng CH, Duan JP, Lee GH (2005) Tuning the emission and morphology of cyclometalated iridium complexes and their applications to organic light-emitting diodes. J Mater Chem 15:1035–1042

    Article  CAS  Google Scholar 

  33. Thomas KRJ, Velusamy M, Lin JT, Chien CH, Tao YT, Wen YS, Hu YH, Chou PT (2005) Efficient red-emitting cyclometalated iridium(III) complexes containing lepidine-based ligands. Inorg Chem 44:5677–5685

    Article  PubMed  CAS  Google Scholar 

  34. Lee W, Kwon TH, Kwon J, Kim JY, Lee C, Hong JI (2011) Effect of main ligands on organic photovoltaic performance of Ir(III) complexes. New J Chem 35:2557–2563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21501037), the Natural Science Foundation of Hainan Province (No. 20152017), the Science and Research Project of Education Department of Hainan Province (Nos. Hjkj2013-25 and Hnky2015-27) and Hainan Normal University’s Innovation Experiment Program for University Students (No. cxcyxj2015005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Niu.

Electronic supplementary material

10895_2015_1718_MOESM1_ESM.pdf

Crystallographic data (excluding structure factors) for the structural analysis have been deposited with the Cambridge Crystallographic Data Center as supplementary publication No. CCDC 1412058 (3b). Copies of the data can be obtained free of charge via www.ccdc.ac.uk/conts/retrieving.html (or from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, Fax: +44-1223-336-033. E-mail: deposit@ccdc.cam.ac.uk.). (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GN., Zeng, YP., Li, KX. et al. Synthesis, Characterization, Properties and DFT Calculations of 2-(Benzo[b]thiophen-2-yl)pyridine-based Iridium(III) Complexes with Different Ancillary Ligands. J Fluoresc 26, 323–331 (2016). https://doi.org/10.1007/s10895-015-1718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1718-7

Keywords

Navigation