Skip to main content
Log in

Interaction of Graphene Quantum Dots with 4-Acetamido-2,2,6,6-Tetramethylpiperidine-Oxyl Free Radicals: A Spectroscopic and Fluorimetric Study

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report on the interaction of graphene quantum dots (GQDs) with 4-acetamido-2,2,6,6-tetramethylpiperidine-oxyl (4-acetamido-TEMPO) free radicals. The GQDs were N and S, N doped. The fluorescence quantum yields were higher for the doped GQDs compared to the undoped. The interaction is assessed by spectrofluorimetric, steady state/time resolved fluorescence and electron paramagnetic resonance (EPR) techniques. Fluorescence quenching was observed upon the addition of 4-acetamido-TEMPO to the GQDs. Photo-induced electron transfer (PET) mechanism was suggested as the plausible mechanism involved in the fluorescence quenching in which 4-acetamido-TEMPO acted as the electron acceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Scheme 2
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dong Y, Chen C, Zheng X, Gao L, Yu H, Quan X (2012) One-step and high yield simultaneous preparation of single and multi-layer graphene quantum dots from CX-72 carbon black. Journal of Materials Chemistry 22:8764–8766

    Article  CAS  Google Scholar 

  2. Li L, Wu G, Hong T, Yin Z, Sun D, Abdel-Halim ES, Zhu JJ (2014) Graphene quantum dots as fluorescence probes for turn-off sensing of melanine in the presence of Hg2+. ACS Appl Mater Interfaces 6:2858–2864

    Article  PubMed  CAS  Google Scholar 

  3. Ge J, Minhuan L, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Xiangmin M, Pengfei W, Chun-Sing L, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Commun 5:4596

    CAS  Google Scholar 

  4. Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C, Hu R, Yang B (2012) Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv 2:2717–2720

    Article  CAS  Google Scholar 

  5. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    Article  PubMed  CAS  Google Scholar 

  6. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research 8:355–381

    Article  CAS  Google Scholar 

  7. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333–5338

    Article  PubMed  CAS  Google Scholar 

  8. Jin SH, Kim DH, Jun GH, Hong SH, Jeon S (2013) Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7:1239–1245

    Article  PubMed  CAS  Google Scholar 

  9. Wang Y, Zhang L, Liang RP, Bai JM, Qiu J (2013) Using Graphene Quantum Dots as Photoluminescent Probes for Protein Kinase Sensing, Anal. Chem 85:9148–9155

    CAS  Google Scholar 

  10. Li X, Zhu S, Xu B, Ma K, Zhang J, Yang B, Tian W (2013) Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 5:7776–7779

    Article  PubMed  CAS  Google Scholar 

  11. Yuezhen H, Wang X, Sun J, Jiao S, Chen H, Gao F, Wang L (2014) Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system. Analytica Chimica Acta 810:71–78

    Article  Google Scholar 

  12. Huang H, Liao L, Xu X, Zou M, Liu F, Li N (2013) The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): A platform for metal ion sensing. Talanta 15:152–157

    Article  Google Scholar 

  13. Wu Z, Li W, Chen J, Yu C (2014) A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119:538–543

    Article  PubMed  CAS  Google Scholar 

  14. Fan L, Hu Y, Wang X, Zhang L, Li F, Han D, Li Z, Zhang Q, Wang Z, Niu L (2012) Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101:192–197

    Article  PubMed  CAS  Google Scholar 

  15. Adegoke O, Chidawanyika W, Nyokong T (2012) Interaction of CdTe quantum dots with 2,2-diphenyl-1-picrylhydrazyl free radical: a spectroscopic, fluorimetric and kinetic study. J Fluoresc 22:771–778

    Article  PubMed  CAS  Google Scholar 

  16. Adegoke O, Hosten E, McCleland C, Nyokong T (2012) CdTe quantum dots functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion. Anal Chim Acta. 721:154–161

    Article  PubMed  CAS  Google Scholar 

  17. Tshangana C, Nyokong T (2015) The photophysical properties of multi-functional quantum dots-magnetic nanoparticles – indium octacarboxy phthalocyanine nanocomposite, J. Fluorescence 25:199–210

    Article  CAS  Google Scholar 

  18. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Raid EH, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports 4:1–9

    Google Scholar 

  19. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xied Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277

  20. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Ed. 76:12660–11264

    Google Scholar 

  21. Fischer S, Georges J (1996) Fluorescence quantum yield of Rhodamine 6G in ethanol as a function of concentration using lens spectrometry. Chemical physics letters. 260:115–118

    Article  CAS  Google Scholar 

  22. Yuan F, Ding L, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S (2015) Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale. 7:11727–11733

    Article  PubMed  CAS  Google Scholar 

  23. Benitez-Martinez S, Valcarcel M (2014) Graphene quantum dots as sensor for phenols in olive oil. Sensors and Actuators B 197:350–357

    Article  CAS  Google Scholar 

  24. Tianju F, Wenjin Z, Wei T, Chunqiu Y, Songzhao T, Kaiyu C, Yidong L, Wei, H, Yong M, Arthur, E (2015) Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Research Letters 10:1–8

  25. Chua CK CK, Sofer Z, Šimek P, Jankovský O, K KÍ, Bakardjieva S, Kučková SH, Pumera M (2015) Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene. ACS Nano 9:2548–2555

    Article  PubMed  Google Scholar 

  26. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

    Article  PubMed  Google Scholar 

  27. Dong Y, Lin J, Chen Y, Fu F, Chi Y, Chen G (2014) Graphene quantum dots and graphite nanocrystals in coal. Nanoscale 6:7410–7415

    Article  PubMed  CAS  Google Scholar 

  28. Zheng XT, Ananthanarayanan KQ, Luo P, Chen P (2015) Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small 11:1620–1636

    Article  PubMed  CAS  Google Scholar 

  29. Feng Y, Zhao J, Yan X, Tang F, Xue Q (2014) Enhancement in the fluorescence of graphene quantum dots by hydrazine reduction. Carbon 66:334–339

    Article  CAS  Google Scholar 

  30. Hu Y, Zhao G, Lu N, Chen Z, Zhang H, Li H, Shao L, Qu L (2013) Graphene quantum dots-carbon nanotubes hybrid arrays for supercapacitors. Nanotechnology. doi:10.1088/0957-4484/24/19/195401

    PubMed Central  Google Scholar 

  31. Chien C, Li S, Lai W, Yeh Y, Chen H, Chen I, Chen L, Nemoto IS (2012) Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 51:6662–6666

    Article  CAS  Google Scholar 

  32. Wei D, Wei Z, Chen S, Qi X, Yang T, Hu J, Wang D, Li-Jun W, Shahnaz F, Li L (2013) Space-confinement-induced synthesis of Pyridinic- and pyrollic-Nitrogen doped graphene for the catalysis of oxygen reduction. Angew Chem Int Ed 52:11755–11759

    Article  Google Scholar 

  33. Sen VD, Golubev VA (2009) Kinetics and mechanism for acid catalyzed disproportionation of 2,2,6,6 tetramethylpiperidine-1-oxyl. J Phys Org Chem 22:138–143

    Article  CAS  Google Scholar 

  34. Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 11:433–442

    Article  Google Scholar 

  35. Fengxiang W, Zhenyan G, Wu L, Wenjan W, Xifeng X, Qingli H (2014) Graphene quantum dots as fluorescent sensing platform for highly efficient detection of copper (II) ions. Sensors and Actuators B 190:516–522

    Article  Google Scholar 

  36. Chakraborti H, Sinha S, Ghosh S, Pal SK (2013) Interfacing water soluble nanomaterials with fluorescence chemosensing: graphene quantum dots to detect Hg2+ in 100 % aqueous solution. Materials letters 97:78–80

    Article  CAS  Google Scholar 

  37. Murov SL, Carmichael I (1993) Hug GL in: “Handbook of Photochemistry” 2nd edition, Decker M. New York 207

  38. Liu EH, Qi LW, Li P (2010) Structural Relationship and Binding Mechanisms of Five Flavonoids with Bovine Serum Albumin. Molecules 15:9092–9103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa, through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (UID 62620) as well as Rhodes University/DST Centre for Nanotechnology Innovation, Rhodes University, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Nyokong.

Ethics declarations

Conflicts of Interest

There are no potential conflicts of interest with regard to this manuscript.

Funding

The funders have agreed to publication.

Human and Animal Studies

The research does not involve human participants and/or Animals.

Electronic supplementary material

Fig. S1

(DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achadu, O.J., Nyokong, T. Interaction of Graphene Quantum Dots with 4-Acetamido-2,2,6,6-Tetramethylpiperidine-Oxyl Free Radicals: A Spectroscopic and Fluorimetric Study. J Fluoresc 26, 283–295 (2016). https://doi.org/10.1007/s10895-015-1712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1712-0

Keywords

Navigation