Skip to main content
Log in

Symmetric Meso-Chloro-Substituted Pentamethine Cyanine Dyes Containing Benzothiazolyl/Benzoselenazolyl Chromophores Novel Synthetic Approach and Studies on Photophysical Properties upon Interaction with bio-Objects

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A series of symmetric pentamethine cyanine dyes derived from various N-substituted benzothiazolium/benzoselenazolium salts, and a conjugated bis-aniline derivative containing a chlorine atom at meso-position with respect to the polymethine chain, were synthesized using a novel improved synthetic approach under mild conditions at room temperature. The reaction procedure was held by grinding the starting compounds for relative short times. The novel method is reliable and highly reproducible. Some photophysical characteristics were recorded in various solvents, including absorption, and fluorescence quantum yields using Cy-5 as a reference. Additional studies on interactions with several bio-objects such as liposomes, DNA, and proteins have been investigated in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pauli J, Vag T, Haag R, Spieles M, Wenzel M, Kaiser W, Resch-Genger U, Hilger I (2009) An in vitro characterization study of new near infrared dyes for molecular imaging. Eur J Med Chem 44:3496–3503

    Article  PubMed  CAS  Google Scholar 

  2. Ebert B, Riefke B, Sukowski U, Licha K (2011) Cyanine dyes as contrast agents for near-infrared imaging in vivo: acute tolerance, pharmacokinetics and fluorescence imaging. J Biomed Opt 16(6):060030–060039

    Article  Google Scholar 

  3. Lidzey D, Bradley D, Virgili T, Armitage A, Skolnick H, Walker S (1999) Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys Rev Lett 82(16):3316–3319

    Article  CAS  Google Scholar 

  4. Jenatsch S, Geiger T, Heier J, Kirsch C, Nuesch F, Paracchino A, Rentsch D, Ruhstaller B, Veron A, Hany R (2015) Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells. Sci Technol Adv Mater 16:0350030–0350039

    Article  Google Scholar 

  5. Czerney P, Graneb G, Birckner E, Vollmer F, Rettig W (1995) Molecular engineering of cyanine-type fluorescent and laser dyes. J Photochem Photobiol A Chem 89:31–36

    Article  CAS  Google Scholar 

  6. Castro F, Faes A, Geiger T, Graeff C, Nagel N, Nuesch F, Hany R (2006) On the use of cyanine dyes as low-band gap materials in bulk heterojunction photovoltaic devices. Synth Met 156:973–978

    Article  CAS  Google Scholar 

  7. Wu W, Hua J, Jin Yi, Zhan W, tian H (2008) Protovoltaic Properties of Tree new Cyanine Dyes for dye-Sensitized Solar Cells Photochem Photobiol Sci 7:63–68.

  8. Chatterju S, Gottschalk P, Davis P, Schuster G (1988) Electron-transfer reactions in cyanine borate ion pairs: photopolymerization initiators sensitive to visible light. J Am Chem Soc 110(7):2326–2328

    Article  Google Scholar 

  9. Ja K, Zasada M, Paczkowski J (2007) Photopolymerization reaction initiated by a visible light photoinitiating system: cyanine dye/borate salt/1,3,5,-triazine. J Polym Sci Part A: Polym Chem 45(16):3626–3636

    Article  Google Scholar 

  10. Markova L, Malinovskii V, Patsenker L, Haner R (2013) J-vs. H-type assembly: penthamethine cyanine (Cy5) as a near-IR chiroptical reporter. Chem Commun 49:5298–5300

    Article  CAS  Google Scholar 

  11. Nanjunda R, Owens E, Mickelson L, Dost T, Stroeva K, Huynh H, Germann M, Henary M, Wilson W (2013) Selective G-quadruplex DNA recognition by a new class of desined cyanines. Molecules 18:13588–13607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Kaloyanova S, Trusova V, Gorbenko G, Deligeorgiev T (2011) Synthesis and fluorescence characterization of novel asymmetric cyanine dyes for DNA detection. J Photochem Photobiol A 217:147–156

    Article  CAS  Google Scholar 

  13. Guralchuk G, Sorokin A, Katrunov I, Yefimova S, Lebedenko A, Yu M, Yarmoluk S (2007) Specificity of cyanine dye L-21 aggregation in solution witrh nucleic acids. J Fluoresc 17:370–376

    Article  PubMed  CAS  Google Scholar 

  14. Mishra A, Behera R, Behera P, Mishra B, Behera G (2000) Cyanines during the 1990s: a review. Chem Rev 100:1973–2011

    Article  PubMed  CAS  Google Scholar 

  15. Kricka L (2002) Stains, labels and detection strategies for nucleic acids assays. Ann Clin Biochem 39(2):114–129

    Article  PubMed  CAS  Google Scholar 

  16. Biver T, Boggioni A, Secco F, Turriani E, Venturini S, Yarmoluk S (2007) Influence of cyanine dye structure on self-aggregation and interaction with nucleic acids: a kinetic approach to TO and BO binding. Arch Biochem Biophys 465:90–100

    Article  PubMed  CAS  Google Scholar 

  17. Davidson Y, Gunn B, Soper S (1996) Spectroscopic and binding properties of near-infrared tricarbocyanine dyes to double-stranded DNA. Appl Spectrosc 50(2):211–221

    Article  CAS  Google Scholar 

  18. Rye H, Yue S, Wemmer D, Quesada M, Haughland R, Mathies R, Glazer A (1992) Stable fluorescence complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and application. Nucleic Acids Rev 20:2803–2812

    Article  CAS  Google Scholar 

  19. Volkova K, Kovalska V, Balanda A, Losytskyy M, Colub A, Vermeij R, Subramaniam V, Tolmachev O, Yarmoluk S (2008) Specific fluorescent detection of fibrillar alpha-synuclein using mono- and trimethine cyanine dyes. Bioorg Med Chem 16:1452–1459

    Article  PubMed  CAS  Google Scholar 

  20. Kovalska V, Losytskyy M, Tolmachev O, Yu S, Segers-Nolten G, Subramaniam V, YArmoluk S (2012) Tri- and pentamethine cyanine dyes for fluorescence detection of α-synuclein oligomeric aggregates. Is Missing the Journal 22(6):1441–1448

    CAS  Google Scholar 

  21. Sovenyhazy K, Bordelon J, Petty J (2003) Spectroscopic studies pf the multiple binding modes of a trinethine-bridged cyanine dye with DNA. Nucleic Acids Res 31(10):2561–2569

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kovalska V, Tokar V, Losytskyy M, Deligeorgiev T, Vassilev A, Gadjev N, Drexhage K, Yarmoluk S (2006) Studies of monomeric and homodimeric oxazolo[4,5-b]pyridinium cyanine dyes as fluorescent probes for nucleic acids visualization. J Biochem Biophys Methods 68(3):155–165

    Article  PubMed  CAS  Google Scholar 

  23. Puyol M, Encinas C, Rivera L, Miltsov S, Alonso J (2007) Characterisation of new norcyanine dyes and their application as pH chromoionophores in optical sensors. Dyes Pigments 73:383–389

    Article  CAS  Google Scholar 

  24. Zhang Z, Achilefu S (2005) Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range. Chem Commun:5887–5889

  25. Guo Z, Park S, Yoon J, Skin I (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43(1):16–29

    Article  PubMed  Google Scholar 

  26. Luo S, Zhang E, Yo S, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138

    Article  PubMed  CAS  Google Scholar 

  27. Bartlett G (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    PubMed  CAS  Google Scholar 

  28. Bulychev A, Verchoturov V, Gulaev B (1988) Current methods of biophysical studies. Vyschaya shkola, Moscow

    Google Scholar 

  29. Caroff A, Litzinger E, Connor R, Fishman I, Armitage B (2002) Helical aggregation of cyanine dyes on DNA templates: effect of dye structure on formation of homo- and heteroaggregates. Langmuir 18:6330–6337

    Article  Google Scholar 

  30. Kirstein S, Daehne S (2006) J-aggregates of amphiphilic cyanine dyes; self-organization of artificial light harvesting complexes. Int J Photogr 2006:1–21

    Google Scholar 

  31. Losytskyy M, Volkova K, Kovalska V, Makovenko I, Yu S, Tolmachev O, Yarmoluk S (2005) Fluorescence properties of pentamethine cyanine dyes with cyclopentene and cyclohexene group in presence of biological molecules. J Fluoresc 15(6):849–857

    Article  PubMed  CAS  Google Scholar 

  32. Balen G, Martinet C, Caron G, Bouchard G, Reist M, Carrupt P, Fruttero R, Gasco A, Testa B (2004) Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Med Res Rev 3:299–324

    Article  Google Scholar 

  33. Ahsan M, Samy J, Khalilullah H, Nomani M, Saraswat P, Gaur R, Singh A (2011) Molecular properties prediction and synthesis of novel 1, 3, 4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg Med Chem Lett 21(24):7246–7250

    Article  PubMed  CAS  Google Scholar 

  34. Irwin J, Shoichet B (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Ishchenko A Structure and spectral-luminescent properties of polymethine dyes. Russ Chem Rev 60:865–884.

  36. Kasha M (1963) Energy transfer mechanism and the molecular exciton model for molecular aggregate. Radiat Res 20:55–71

    Article  PubMed  CAS  Google Scholar 

  37. Ogul’chansky T, Yaschuk V, Losytskyy M, Kocheshev I, Yarmoluk S (2000) Interaction of cyanine dyes with nucleic acids. XVII towards an aggregation of cyanine dyes in solutions as a factor facilitating nucleic acid detection. Spectrochim Acta Part A 56:805–814

    Article  Google Scholar 

  38. Hannah K, Armitage DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization. Acc Chem Res 37:845–853.

  39. Kasha M, Rawls H, El-Bayoumi M The exciton model in molecular spectroscopy Pure Appl Chem 11:372–392.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atanas Kurutos or Valeriya Trusova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurutos, A., Ryzhova, O., Trusova, V. et al. Symmetric Meso-Chloro-Substituted Pentamethine Cyanine Dyes Containing Benzothiazolyl/Benzoselenazolyl Chromophores Novel Synthetic Approach and Studies on Photophysical Properties upon Interaction with bio-Objects. J Fluoresc 26, 177–187 (2016). https://doi.org/10.1007/s10895-015-1700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1700-4

Keywords

Navigation