Journal of Fluorescence

, Volume 26, Issue 1, pp 177–187 | Cite as

Symmetric Meso-Chloro-Substituted Pentamethine Cyanine Dyes Containing Benzothiazolyl/Benzoselenazolyl Chromophores Novel Synthetic Approach and Studies on Photophysical Properties upon Interaction with bio-Objects

  • Atanas Kurutos
  • Olga Ryzhova
  • Valeriya Trusova
  • Galyna Gorbenko
  • Nikolay Gadjev
  • Todor Deligeorgiev


A series of symmetric pentamethine cyanine dyes derived from various N-substituted benzothiazolium/benzoselenazolium salts, and a conjugated bis-aniline derivative containing a chlorine atom at meso-position with respect to the polymethine chain, were synthesized using a novel improved synthetic approach under mild conditions at room temperature. The reaction procedure was held by grinding the starting compounds for relative short times. The novel method is reliable and highly reproducible. Some photophysical characteristics were recorded in various solvents, including absorption, and fluorescence quantum yields using Cy-5 as a reference. Additional studies on interactions with several bio-objects such as liposomes, DNA, and proteins have been investigated in the present work.


Pentamethine cyanine dyes 2-methylbenzothiazole 2-methylbenzoselenazole Fluorescent markers Liposomes DNA, proteins H-aggregates 


  1. 1.
    Pauli J, Vag T, Haag R, Spieles M, Wenzel M, Kaiser W, Resch-Genger U, Hilger I (2009) An in vitro characterization study of new near infrared dyes for molecular imaging. Eur J Med Chem 44:3496–3503PubMedCrossRefGoogle Scholar
  2. 2.
    Ebert B, Riefke B, Sukowski U, Licha K (2011) Cyanine dyes as contrast agents for near-infrared imaging in vivo: acute tolerance, pharmacokinetics and fluorescence imaging. J Biomed Opt 16(6):060030–060039CrossRefGoogle Scholar
  3. 3.
    Lidzey D, Bradley D, Virgili T, Armitage A, Skolnick H, Walker S (1999) Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys Rev Lett 82(16):3316–3319CrossRefGoogle Scholar
  4. 4.
    Jenatsch S, Geiger T, Heier J, Kirsch C, Nuesch F, Paracchino A, Rentsch D, Ruhstaller B, Veron A, Hany R (2015) Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells. Sci Technol Adv Mater 16:0350030–0350039CrossRefGoogle Scholar
  5. 5.
    Czerney P, Graneb G, Birckner E, Vollmer F, Rettig W (1995) Molecular engineering of cyanine-type fluorescent and laser dyes. J Photochem Photobiol A Chem 89:31–36CrossRefGoogle Scholar
  6. 6.
    Castro F, Faes A, Geiger T, Graeff C, Nagel N, Nuesch F, Hany R (2006) On the use of cyanine dyes as low-band gap materials in bulk heterojunction photovoltaic devices. Synth Met 156:973–978CrossRefGoogle Scholar
  7. 7.
    Wu W, Hua J, Jin Yi, Zhan W, tian H (2008) Protovoltaic Properties of Tree new Cyanine Dyes for dye-Sensitized Solar Cells Photochem Photobiol Sci 7:63–68.Google Scholar
  8. 8.
    Chatterju S, Gottschalk P, Davis P, Schuster G (1988) Electron-transfer reactions in cyanine borate ion pairs: photopolymerization initiators sensitive to visible light. J Am Chem Soc 110(7):2326–2328CrossRefGoogle Scholar
  9. 9.
    Ja K, Zasada M, Paczkowski J (2007) Photopolymerization reaction initiated by a visible light photoinitiating system: cyanine dye/borate salt/1,3,5,-triazine. J Polym Sci Part A: Polym Chem 45(16):3626–3636CrossRefGoogle Scholar
  10. 10.
    Markova L, Malinovskii V, Patsenker L, Haner R (2013) J-vs. H-type assembly: penthamethine cyanine (Cy5) as a near-IR chiroptical reporter. Chem Commun 49:5298–5300CrossRefGoogle Scholar
  11. 11.
    Nanjunda R, Owens E, Mickelson L, Dost T, Stroeva K, Huynh H, Germann M, Henary M, Wilson W (2013) Selective G-quadruplex DNA recognition by a new class of desined cyanines. Molecules 18:13588–13607PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kaloyanova S, Trusova V, Gorbenko G, Deligeorgiev T (2011) Synthesis and fluorescence characterization of novel asymmetric cyanine dyes for DNA detection. J Photochem Photobiol A 217:147–156CrossRefGoogle Scholar
  13. 13.
    Guralchuk G, Sorokin A, Katrunov I, Yefimova S, Lebedenko A, Yu M, Yarmoluk S (2007) Specificity of cyanine dye L-21 aggregation in solution witrh nucleic acids. J Fluoresc 17:370–376PubMedCrossRefGoogle Scholar
  14. 14.
    Mishra A, Behera R, Behera P, Mishra B, Behera G (2000) Cyanines during the 1990s: a review. Chem Rev 100:1973–2011PubMedCrossRefGoogle Scholar
  15. 15.
    Kricka L (2002) Stains, labels and detection strategies for nucleic acids assays. Ann Clin Biochem 39(2):114–129PubMedCrossRefGoogle Scholar
  16. 16.
    Biver T, Boggioni A, Secco F, Turriani E, Venturini S, Yarmoluk S (2007) Influence of cyanine dye structure on self-aggregation and interaction with nucleic acids: a kinetic approach to TO and BO binding. Arch Biochem Biophys 465:90–100PubMedCrossRefGoogle Scholar
  17. 17.
    Davidson Y, Gunn B, Soper S (1996) Spectroscopic and binding properties of near-infrared tricarbocyanine dyes to double-stranded DNA. Appl Spectrosc 50(2):211–221CrossRefGoogle Scholar
  18. 18.
    Rye H, Yue S, Wemmer D, Quesada M, Haughland R, Mathies R, Glazer A (1992) Stable fluorescence complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and application. Nucleic Acids Rev 20:2803–2812CrossRefGoogle Scholar
  19. 19.
    Volkova K, Kovalska V, Balanda A, Losytskyy M, Colub A, Vermeij R, Subramaniam V, Tolmachev O, Yarmoluk S (2008) Specific fluorescent detection of fibrillar alpha-synuclein using mono- and trimethine cyanine dyes. Bioorg Med Chem 16:1452–1459PubMedCrossRefGoogle Scholar
  20. 20.
    Kovalska V, Losytskyy M, Tolmachev O, Yu S, Segers-Nolten G, Subramaniam V, YArmoluk S (2012) Tri- and pentamethine cyanine dyes for fluorescence detection of α-synuclein oligomeric aggregates. Is Missing the Journal 22(6):1441–1448Google Scholar
  21. 21.
    Sovenyhazy K, Bordelon J, Petty J (2003) Spectroscopic studies pf the multiple binding modes of a trinethine-bridged cyanine dye with DNA. Nucleic Acids Res 31(10):2561–2569PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kovalska V, Tokar V, Losytskyy M, Deligeorgiev T, Vassilev A, Gadjev N, Drexhage K, Yarmoluk S (2006) Studies of monomeric and homodimeric oxazolo[4,5-b]pyridinium cyanine dyes as fluorescent probes for nucleic acids visualization. J Biochem Biophys Methods 68(3):155–165PubMedCrossRefGoogle Scholar
  23. 23.
    Puyol M, Encinas C, Rivera L, Miltsov S, Alonso J (2007) Characterisation of new norcyanine dyes and their application as pH chromoionophores in optical sensors. Dyes Pigments 73:383–389CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Achilefu S (2005) Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range. Chem Commun:5887–5889Google Scholar
  25. 25.
    Guo Z, Park S, Yoon J, Skin I (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43(1):16–29PubMedCrossRefGoogle Scholar
  26. 26.
    Luo S, Zhang E, Yo S, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138PubMedCrossRefGoogle Scholar
  27. 27.
    Bartlett G (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468PubMedGoogle Scholar
  28. 28.
    Bulychev A, Verchoturov V, Gulaev B (1988) Current methods of biophysical studies. Vyschaya shkola, MoscowGoogle Scholar
  29. 29.
    Caroff A, Litzinger E, Connor R, Fishman I, Armitage B (2002) Helical aggregation of cyanine dyes on DNA templates: effect of dye structure on formation of homo- and heteroaggregates. Langmuir 18:6330–6337CrossRefGoogle Scholar
  30. 30.
    Kirstein S, Daehne S (2006) J-aggregates of amphiphilic cyanine dyes; self-organization of artificial light harvesting complexes. Int J Photogr 2006:1–21Google Scholar
  31. 31.
    Losytskyy M, Volkova K, Kovalska V, Makovenko I, Yu S, Tolmachev O, Yarmoluk S (2005) Fluorescence properties of pentamethine cyanine dyes with cyclopentene and cyclohexene group in presence of biological molecules. J Fluoresc 15(6):849–857PubMedCrossRefGoogle Scholar
  32. 32.
    Balen G, Martinet C, Caron G, Bouchard G, Reist M, Carrupt P, Fruttero R, Gasco A, Testa B (2004) Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Med Res Rev 3:299–324CrossRefGoogle Scholar
  33. 33.
    Ahsan M, Samy J, Khalilullah H, Nomani M, Saraswat P, Gaur R, Singh A (2011) Molecular properties prediction and synthesis of novel 1, 3, 4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg Med Chem Lett 21(24):7246–7250PubMedCrossRefGoogle Scholar
  34. 34.
    Irwin J, Shoichet B (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ishchenko A Structure and spectral-luminescent properties of polymethine dyes. Russ Chem Rev 60:865–884.Google Scholar
  36. 36.
    Kasha M (1963) Energy transfer mechanism and the molecular exciton model for molecular aggregate. Radiat Res 20:55–71PubMedCrossRefGoogle Scholar
  37. 37.
    Ogul’chansky T, Yaschuk V, Losytskyy M, Kocheshev I, Yarmoluk S (2000) Interaction of cyanine dyes with nucleic acids. XVII towards an aggregation of cyanine dyes in solutions as a factor facilitating nucleic acid detection. Spectrochim Acta Part A 56:805–814CrossRefGoogle Scholar
  38. 38.
    Hannah K, Armitage DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization. Acc Chem Res 37:845–853.Google Scholar
  39. 39.
    Kasha M, Rawls H, El-Bayoumi M The exciton model in molecular spectroscopy Pure Appl Chem 11:372–392.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Atanas Kurutos
    • 1
  • Olga Ryzhova
    • 2
  • Valeriya Trusova
    • 2
    • 3
  • Galyna Gorbenko
    • 2
  • Nikolay Gadjev
    • 1
  • Todor Deligeorgiev
    • 1
  1. 1.Sofia University “St. Kliment Ohridski”Faculty of Chemistry and PharmacySofiaBulgaria
  2. 2.Department of Nuclear and Medical PhysicsV.N. Karazin Kharkiv National UniversityKharkivUkraine
  3. 3.19-32 Geroyev TrudaKharkivUkraine

Personalised recommendations