Journal of Fluorescence

, Volume 25, Issue 6, pp 1757–1762 | Cite as

Structural and Luminescence Properties of Sm3+ Doped TTB -Type BaTa2O6 Ceramic Phosphors

  • Mete Kaan Ekmekçi
  • Mustafa İlhan
  • Ali Sadi Başak
  • Sabahattin Deniz


Pure and 0.5 to 10 mole% Sm3+ doped TTB (tetragonal tungsten bronze)-type BaTa2O6 ceramic phosphor was produced by the solid state reaction method which performed at 1425 °C for 20 h. XRD and SEM analysis indicated single TTB phase for undoped and 0.5 to 10 mole% Sm3+ doped BaTa2O6 structures. SEM also showed that the BaTa2O6 grain size decreased with the increasing content of Sm3+. Optical analysis indicated significant emissions in the visible spectral region as green (λ = 562.7 nm) and orange-reddish (λ = 597.1 nm). The emission intensity increased with the increasing doping concentration up to 2.5 mole%, and then decreased due to the concentration quenching effect.


TTB-type BaTa2O6 Photoluminescence Solid state reaction 



The authors would like to thanks to Marmara University Research Fund (BAPKO) for supporting this research. Project No. FEN-A-150513-0167


  1. 1.
    Castro Y, Julian B, Boissiére C, Viana B, Amenitsch H, Grosso D, Sanchez C (2007) Synthesis, characterization and optical properties of Eu2O3 mesoporous thin films. Nanotechnology 18:55705CrossRefGoogle Scholar
  2. 2.
    Wang D, Yin QR, Li YX, Wang MQ (2002) Concentration quenching of Eu2+ in SrO · Al2O3:Eu2+ phosphor. J Lumin 97:1–6CrossRefGoogle Scholar
  3. 3.
    Chang H, Lenggoro IW, Ogi T, Okuyama K (2005) Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route. Mater Lett 59:1183CrossRefGoogle Scholar
  4. 4.
    Yang HM, Shi JX, Gong ML (2005) A novel red emitting phosphor Ca2SnO4: Eu3+”. J Solid State Chem 178:917–920CrossRefGoogle Scholar
  5. 5.
    Fang TH, Hsiao YJ, Chang YS, Chang YH (2006) Photoluminescent characterization of KNbO3: Eu3+. Mater Chem Phys 100:418–422CrossRefGoogle Scholar
  6. 6.
    Welker T (1991) Recent developments on phosphors for fluorescent lamps and cathode-ray tubes. J Lumin 48–49:49–56CrossRefGoogle Scholar
  7. 7.
    Vedda A, Martini M, Nikl M, Mihokova E, Nitsch K, Solovieva N, Karagulian F (2002) Optical absorption and thermoluminescence of Tb3+-doped phosphate scintillating glasses. J Phys Condens Matter 14:7417CrossRefGoogle Scholar
  8. 8.
    Nakamura S, Fasol G (1997) The blue laser diode: GaN based light emitters and laser. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Levine AK, Palilla FC (1994) A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television. Appl Phys Lett 5:5118–5120Google Scholar
  10. 10.
    Rao RP (2005) Tm3+ activated lanthanum phosphate: a blue PDP phosphor. J Lumin 113:271–278CrossRefGoogle Scholar
  11. 11.
    Yan ZG, Yan CH (2008) Controlled synthesis of rare earth nanostructures. J Mater Chem 18:5046–5059CrossRefGoogle Scholar
  12. 12.
    Magneli A (1949) Ark Kemi 1:213–221Google Scholar
  13. 13.
    Simon A, Ravez J (2006) Solid-state chemistry and non-linear tungsten bronzes materials. C R Chim 9:1268–1276CrossRefGoogle Scholar
  14. 14.
    Roulland F, Josse M, Castel E, Maglione M (2009) Influence of ceramic process and Eu content on the composite multiferroic properties of the Ba6-2x Ln2xFe1+xNb9-xO30 TTB system. Solid State Sci 1:1709–1716CrossRefGoogle Scholar
  15. 15.
    Kovba LM, Lykova LN, Paromova MV, Lopato LM, Shevchenko AV (1977) Barium oxide-tantalum oxide system. Russ J Inorg Chem 22:1544Google Scholar
  16. 16.
    Layden GK (1968) Dielectric and structure studies of hexagonal BaTa2O6. Mater Res Bull 3:349CrossRefGoogle Scholar
  17. 17.
    Smolenskii GA, Isupov VA, Agranovskaia AI (1956) Sov Phys 300:1Google Scholar
  18. 18.
    Ichinose N, Shimada T (2006) Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg, Zn]1/3Ta2/3)O3 systems. J Eur Ceram Soc 26:1755–1759CrossRefGoogle Scholar
  19. 19.
    Lee YH, Kim YS, Kim DH, Oh MH (2007) Conduction mechanisms in barium tantalates films and modification of interfacial barrier height. IEEE Trans Electron Devices 47:71–76CrossRefGoogle Scholar
  20. 20.
    Kato H, Kudo A (1998) New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett 295:487–492CrossRefGoogle Scholar
  21. 21.
    Layden GK (1967) Polymorphism of BaTa2O6. Mater Res Bull 2:533CrossRefGoogle Scholar
  22. 22.
    Vanderah TA, Roth RS, Siegrist T, Febo W, Loezos JM, Wong-Ng W (2003) Subsolidus phase equilibria and crystal chemistry in the system BaO–TiO2–Ta2O5. Solid State Sci 5:149–164CrossRefGoogle Scholar
  23. 23.
    Mumme WG, Grey IE, Roth RS, Vanderah TA (2007) Contrasting oxide crystal chemistry of Nb and Ta: the structures of the hexagonal bronzes BaTa2O6 and Ba0.93Nb2.03O6. J Solid State Chem 180:2429–2436CrossRefGoogle Scholar
  24. 24.
    Navale SC, Samuel V, Gaikwad AB, Ravi V (2007) A co-precipitation technique to prepare BaTa2O6. Ceram Int 33:297–299CrossRefGoogle Scholar
  25. 25.
    İlhan M, Mergen A, Yaman C (2011) Mechanochemical synthesis and characterisation of BaTa2O6 ceramic powders. Ceram Int 37:1507–1514CrossRefGoogle Scholar
  26. 26.
    İlhan M, Mergen A, Yaman C (2013) Removal of iron from BaTa2O6 ceramic powder produced by high energy milling. Ceram Int 39:5741–5750CrossRefGoogle Scholar
  27. 27.
    Speight JG (1999) Lange’s handbook of chemistry, 16th edn. The McGraw-Hill Companies, New YorkGoogle Scholar
  28. 28.
    Erkmen EZ (2012) Malzeme Karakterizasyonu ve Temel İlkeleri. Yalın Yayıncılık, İstanbulGoogle Scholar
  29. 29.
    Garciá JS, Bausá LE, Jaque D (2005) An introduction to the optical spectroscopy of inorganic solids. Wiley, EnglandGoogle Scholar
  30. 30.
    Pang TP, Yang MR, Chen KS (2000) Photoluminescence of ZnS:Sm phosphor prepared in a reductive atmosphere. Ceram Int 26:153–158CrossRefGoogle Scholar
  31. 31.
    Kaur G, Dwivedi Y, Rai SB (2010) Study of enhanced red emission from Sm(Sal)3 Phen ternary complexes in Poly Vinly alcohol film. Opt Commun 283:3441–3447CrossRefGoogle Scholar
  32. 32.
    Yerpude AN, Dhoble SJ (2012) Synthesis and photoluminescence properties of Dy3+, Sm3+ activated Sr5SiO4Cl6 phosphor. J Lumin 132:2975–2978CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mete Kaan Ekmekçi
    • 1
  • Mustafa İlhan
    • 2
  • Ali Sadi Başak
    • 1
  • Sabahattin Deniz
    • 3
  1. 1.Art and Science FacultyMarmara UniversityKadıköyTurkey
  2. 2.Faculty of EngineeringMarmara UniversityKadıköyTurkey
  3. 3.Faculty of TechnologyMarmara UniversityKadıköyTurkey

Personalised recommendations