Advertisement

Journal of Fluorescence

, Volume 25, Issue 6, pp 1681–1693 | Cite as

Interaction Behavior Between Niclosamide and Pepsin Determined by Spectroscopic and Docking Methods

  • Liuqi Guo
  • Xiaoli Ma
  • Jin Yan
  • Kailin Xu
  • Qing Wang
  • Hui Li
ORIGINAL ARTICLE

Abstract

The interaction between niclosamide (NIC) and pepsin was investigated using multispectroscopic and molecular docking methods. Binding constant, number of binding sites, and thermodynamic parameters at different temperatures were measured. Results of fluorescence quenching and synchronous fluorescence spectroscopy in combination with three-dimensional fluorescence spectroscopy showed that changes occurred in the microenvironment of tryptophan residues and the molecular conformation of pepsin. Molecular interaction distance and energy-transfer efficiency between pepsin and NIC were determined based on Förster nonradiative energy-transfer mechanism. Furthermore, the binding of NIC inhibited pepsin activity in vitro. All these results indicated that NIC bound to pepsin mainly through hydrophobic interactions and hydrogen bonds at a single binding site. In conclusion, this study provided substantial molecular-level evidence that NIC could induce changes in pepsin structure and conformation.

Keywords

Niclosamide Pepsin Binding Fluorescence spectroscopy Molecular modeling 

Notes

Acknowledgments

We gratefully acknowledge the financial support of the Applied Basic Research Project of Sichuan Province (Grant No. 2014JY0042).

References

  1. 1.
    Manek RV, Kolling WM (2004) Influence of moisture on the crystal forms of niclosamide obtained from acetone and ethyl acetate. AAPS PharmSciTech 5(1):1–8. doi: 10.1208/pt050114 Google Scholar
  2. 2.
    Yo YT, Lin YW, Wang YC, Balch C, Huang RL, Chan MW, Sytwu HK, Chen CK, Chang CC, Nephew KP, Huang T, Yu MH, Lai HC (2012) Growth inhibition of ovarian tumor-initiating cells by niclosamide. Mol Cancer Ther 11(8):1703–1712. doi: 10.1158/1535-7163.MCT-12-0002 CrossRefPubMedGoogle Scholar
  3. 3.
    Helfman DM (2011) Niclosamide: an established antihelminthic drug as a potential therapy against S100A4-mediated metastatic colon tumors. JNCI J Natl Cancer Inst 103(13):991–992. doi: 10.1093/jnci/djr221 CrossRefPubMedGoogle Scholar
  4. 4.
    Imperi F, Massai F, Ramachandran Pillai C, Longo F, Zennaro E, Rampioni G, Visca P, Leoni L (2013) New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57(2):996–1005. doi: 10.1128/AAC.01952-12 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, Liu CY, Huang HW, Chen SC, Hong CF, Lin RK, Chao YS, Hsu JT (2004) Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob Agents Chemother 48(7):2693–2696. doi: 10.1128/AAC.48.7.2693-2696.2004 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Gritti I, Banfi G, Roi GS (2000) Pepsinogens: physiology, pharmacology pathophysiology and exercise. Pharmacol Res: Off J Ital Pharmacol Soc 41(3):265–281. doi: 10.1006/phrs.1999.0586 CrossRefGoogle Scholar
  7. 7.
    Ying M, Huang F, Ye H, Xu H, Shen L, Huan T, Huang S, Xie J, Tian S, Hu Z, He Z, Lu J, Zhou K (2015) Study on interaction between curcumin and pepsin by spectroscopic and docking methods. Int J Biol Macromol 79:201–208. doi: 10.1016/j.ijbiomac.2015.04.057 CrossRefPubMedGoogle Scholar
  8. 8.
    Spelzini D, Peleteiro J, Pico G, Farruggia B (2008) Polyethyleneglycol-pepsin interaction and its relationship with protein partitioning in aqueous two-phase systems. Colloids Surf B: Biointerfaces 67(2):151–156. doi: 10.1016/j.colsurfb.2008.06.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Andreas Scorilas EPD, Levesque MA et al (1999) Immunoenzymatically determined pepsinogen C concentration in breast tumor cytosols: an independent favorable prognostic factor in node-positive patients. Clin Cancer Res 5:1778–1785Google Scholar
  10. 10.
    Zeng HJ, You J, Liang HL, Qi T, Yang R, Qu LB (2014) Investigation on the binding interaction between silybin and pepsin by spectral and molecular docking. Int J Biol Macromol 67:105–111. doi: 10.1016/j.ijbiomac.2014.02.051 CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang H, Cao J, Fei Z, Wang Y (2012) Investigation on the interaction behavior between bisphenol A and pepsin by spectral and docking studies. J Mol Struct 1021:34–39. doi: 10.1016/j.molstruc.2012.04.072 CrossRefGoogle Scholar
  12. 12.
    Li Z, Li Z, Yang L, Xie Y, Shi J, Wang R, Chang J (2015) Investigation of the binding between pepsin and nucleoside analogs by spectroscopy and molecular simulation. J Fluoresc 25(2):451–463. doi: 10.1007/s10895-015-1532-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Lian S, Wang G, Zhou L, Yang D (2013) Fluorescence spectroscopic analysis on interaction of fleroxacin with pepsin. Lumin: J Biol Chem Lumin 28(6):967–972. doi: 10.1002/bio.2469 CrossRefGoogle Scholar
  14. 14.
    Fan Y, Zhang S, Wang Q, Li J, Fan H, Shan D (2013) Investigation of the interaction of pepsin with ionic liquids by using fluorescence spectroscopy. Appl Spectrosc 67(6):648–655. doi: 10.1366/12-06793 CrossRefPubMedGoogle Scholar
  15. 15.
    Cha KH, Cho KJ, Kim MS, Kim JS, Park HJ, Park J, Cho W, Park JS, Hwang SJ (2012) Enhancement of the dissolution rate and bioavailability of fenofibrate by a melt-adsorption method using supercritical carbon dioxide. Int J Nanomedicine 7:5565–5575. doi: 10.2147/IJN.S36939 PubMedCentralPubMedGoogle Scholar
  16. 16.
    Maltas E (2014) Binding interactions of niclosamide with serum proteins. J Food Drug Anal 22(4):549–555. doi: 10.1016/j.jfda.2014.03.004 CrossRefGoogle Scholar
  17. 17.
    Anson ML (1938) The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J Gen Physiol 22(1):79–89PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Group philicity and electrophilicity as possible descriptors for modeling ecotoxicity applied to chlorophenols. Chem Res Toxicol 19(3):356–364. doi: 10.1021/tx050322m CrossRefPubMedGoogle Scholar
  19. 19.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Raymond P, Iczkowski JLM (1961) Electronegativity. J Am Chem Soc 83(17):3547–3551CrossRefGoogle Scholar
  21. 21.
    Pearson RG (1997) Chemical hardnesss. Applications from molecules to solids. VCH-Wiley, WeinheimGoogle Scholar
  22. 22.
    Teng Y, Liu R, Li C, Xia Q, Zhang P (2011) The interaction between 4-aminoantipyrine and bovine serum albumin: multiple spectroscopic and molecular docking investigations. J Hazard Mater 190(1–3):574–581. doi: 10.1016/j.jhazmat.2011.03.084 CrossRefPubMedGoogle Scholar
  23. 23.
    Hu Y-J, Liu Y, Zhang L-X, Zhao R-M, Qu S-S (2005) Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct 750(1–3):174–178. doi: 10.1016/j.molstruc.2005.04.032 CrossRefGoogle Scholar
  24. 24.
    Dong C, Ma S, Liu Y (2013) Studies of the interaction between demeclocycline and human serum albumin by multi-spectroscopic and molecular docking methods. Spectrochim Acta A Mol Biomol Spectrosc 103:179–186. doi: 10.1016/j.saa.2012.10.050 CrossRefPubMedGoogle Scholar
  25. 25.
    Hu Y-J, Liu Y, Shen X-S, Fang X-Y, Qu S-S (2005) Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J Mol Struct 738(1–3):143–147. doi: 10.1016/j.molstruc.2004.11.062 CrossRefGoogle Scholar
  26. 26.
    Tajmir-Riahi HA, Mandeville JS (2010) Complexes of dendrimers with bovine serum albumin. Biomacromolecules 11:465–472CrossRefPubMedGoogle Scholar
  27. 27.
    Bi S, Ding L, Tian Y, Song D, Zhou X, Liu X, Zhang H (2004) Investigation of the interaction between flavonoids and human serum albumin. J Mol Struct 703(1–3):37–45. doi: 10.1016/j.molstruc.2004.05.026 CrossRefGoogle Scholar
  28. 28.
    Zhang YZ, Zhou B, Zhang XP, Huang P, Li CH, Liu Y (2009) Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods. J Hazard Mater 163(2–3):1345–1352. doi: 10.1016/j.jhazmat.2008.07.132 CrossRefPubMedGoogle Scholar
  29. 29.
    Susana Soares NM, de Freitas V (2007) Interaction of different polyphenols with Bovine Serum Albumin (BSA) and Human Salivary r-Amylase (HSA) by fluorescence quenching. J Agric Food Chem 55(16):6726–6735. doi: 10.1021/jf070905x CrossRefPubMedGoogle Scholar
  30. 30.
    Lakowica JR GW, 12 (1973) 4161. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12 (21):4161–4170Google Scholar
  31. 31.
    Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66(3):455–458. doi: 10.1021/j100809a020 CrossRefGoogle Scholar
  32. 32.
    Shilpa Dogra PA, Nair M, Barthwal R (2013) Interaction of anticancer drug mitoxantrone with DNA hexamer sequence d-(CTCGAG)2 by absorption, fluorescence and circular dichroism spectroscopy. J Photochem Photobiol B Biol 123:48–54. doi: 10.1016/j.jphotobiol.2013.03.015 CrossRefGoogle Scholar
  33. 33.
    He LL, Wang X, Liu B, Wang J, Sun YG, Gao EJ, Xu SK (2011) Study on the interaction between promethazine hydrochloride and bovine serum albumin by fluorescence spectroscopy. J Lumin 131(2):285–290. doi: 10.1016/j.jlumin.2010.10.014 CrossRefGoogle Scholar
  34. 34.
    Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stabilit. Biochemistry 20(11):3097–3102. doi: 10.1021/bi00514a017
  35. 35.
    Becktel WJSJ (1987) Protein stability curves. Biopolymers 26(11):1859–1877. doi: 10.1002/bip.360261104 CrossRefPubMedGoogle Scholar
  36. 36.
    Shen LL, Xu H, Huang FW, Li Y, Xiao HF, Yang Z, Hu ZL, He ZD, Zeng ZL, Li YN (2015) Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods. Spectrochim Acta A 135:256–263. doi: 10.1016/j.saa.2014.06.087 CrossRefGoogle Scholar
  37. 37.
    Zeng HJ, Qi TT, Yang R, You J, Qu LB (2014) Spectroscopy and molecular docking study on the interaction behavior between nobiletin and pepsin. J Fluoresc 24(4):1031–1040. doi: 10.1007/s10895-014-1379-y CrossRefPubMedGoogle Scholar
  38. 38.
    Zeng HJ, Liang HL, You J, Qu LB (2014) Study on the binding of chlorogenic acid to pepsin by spectral and molecular docking. Lumin: J Biol Chem Lumin 29(7):715–721. doi: 10.1002/bio.2610 CrossRefGoogle Scholar
  39. 39.
    Gao XY, Zhang XJ, Tang YC, Zhang XP, Zhao WJ, Zi YQ (2011) Analysis of binding interaction between prulifloxacin and pepsin in the existence of Eu(III): A spectroscopic analysis. Curr Anal Chem 7(3):194–200Google Scholar
  40. 40.
    Förster T (1965) Delocalized excitation and excitation transfer, vol 3, Modern Quantum Chemistry. Academic, New YorkGoogle Scholar
  41. 41.
    Horrocks WD, Collier WE (1981) Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium(III) in the calcium-binding protein parvalbumin. J Am Chem Soc 103(10):2865–2862CrossRefGoogle Scholar
  42. 42.
    Jin J, Zhang X (2008) Spectrophotometric studies on the interaction between pazufloxacin mesilate and human serum albumin or lysozyme. J Lumin 128(1):81–86. doi: 10.1016/j.jlumin.2007.05.008 CrossRefGoogle Scholar
  43. 43.
    Teng Y, Zhang H, Liu R (2011) Molecular interaction between 4-aminoantipyrine and catalase reveals a potentially toxic mechanism of the drug. Mol BioSyst 7(11):3157–3163. doi: 10.1039/c1mb05271c CrossRefPubMedGoogle Scholar
  44. 44.
    Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54(4):561–587. doi: 10.1124/pr.54.4.561
  45. 45.
    Donovan JW (1969) Changes in ultraviolet absorption produced by alteration of protein conformation. J Biol Chem 244(8):1961–1967PubMedGoogle Scholar
  46. 46.
    Guo M, Lu WJ, Li MH, Wang W (2008) Study on the binding interaction between carnitine optical isomer and bovine serum albumin. Eur J Med Chem 43(10):2140–2148. doi: 10.1016/j.ejmech.2007.11.006 CrossRefPubMedGoogle Scholar
  47. 47.
    Changwei Liu AB, Cheng G, Lin X, Dong S (1998) Characterization of the structural and functional changes of hemoglobin in dimethyl sulfoxide by spectroscopic techniques. Biochim Biophys Acta 1385:53–60CrossRefGoogle Scholar
  48. 48.
    Wang Q, Yan J, He J, Bai K, Li H (2013) Characterization of the interaction between 3-oxotabersonine and two serum albumins by using spectroscopic techniques. J Lumin 138:1–7. doi: 10.1016/j.jlumin.2013.01.035 CrossRefGoogle Scholar
  49. 49.
    Favilla R, Mazzini A, Cavatorta P, Sorbi RT, Sartor G (1993) The Interaction of 4′, 6-Diamidino-2-phenylindole (DAPI) with Pepsin. J Fluoresc 3(4):229–232CrossRefPubMedGoogle Scholar
  50. 50.
    He J, Wang Q, Zhang L, Lin X, Li H (2014) Docking simulations and spectroscopy of the interactions of ellagic acid and oleuropein with human serum albumin. J Lumin 154:578–583. doi: 10.1016/j.jlumin.2014.06.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Liuqi Guo
    • 1
  • Xiaoli Ma
    • 1
  • Jin Yan
    • 1
  • Kailin Xu
    • 1
  • Qing Wang
    • 1
  • Hui Li
    • 1
  1. 1.College of Chemical EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations