Skip to main content
Log in

Luminescent Properties of Cerium Doped Potassium Iodide Single Crystals in Response to γ-irradiation

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Potassium iodide doped with cerium ions were prepared by Bridgemann Stockbarger technique and investigated by optical absorption, Photoluminescence(PL), Thermoluminescence(TL), Photostimulated Luminescence(PSL) and TL emission. The optical absorption measurement indicates that F and V centers are formed in the crystals during the γ-ray irradiation process. Optical absorption and Photoluminescence studies confirm the presence of cerium ions in the trivalent state. Spectral distribution under the Thermoluminescence Emission(TLE) and Optically Stimulated Luminescence(OSL) support the idea that the defect annihilation process to be due to thermal release of F-electron in KI:Ce3+ crystals. Both Ce3+ and Ce2+ emissions were observed in the Thermoluminescence emission of the crystals. Thermoluminescence(TL) has been identified to be due to thermal release of electron produced during colouration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Blasse G (1979) Handbook on the physics an chemistry of rare earths, Vol. 4, North Holland, Amsterdam

  2. van Eijk CWE, Andriessen J, Dorenbos P, Visser R (1994) Nucl Instrum Methods A348:546

    Article  Google Scholar 

  3. Lu FC, Song XP, Liu QL (2010) Opt Mater 33:91

    Article  Google Scholar 

  4. Hollway WW Jr, Kestigian M (1969) J Opt Soc Am 59:1

    Article  Google Scholar 

  5. Katelnikovas A, Bettentrup H, Uhlich D, Sakirzanovas S, Justel R, Karevia A (2009) J Lumin 129:1356

    Article  CAS  Google Scholar 

  6. Meriel Maniquiz C, Kyeong YJ, Sang MJ (2010) J Electrochem Soc 157(12):H1135

    Article  Google Scholar 

  7. Blasse G (1994) Chem Mater 6:1465

    Article  CAS  Google Scholar 

  8. Gorodetskaya O, Reisfeld R, Orgensen OKJ (1992) Proceedings of the international congress on glass. Bol Soc Esp Ceram Vidrio 31C(4):479

    Google Scholar 

  9. Pedrini C, Moine B, Bouttet D, Belsky AN, Mikhailin VV, Vasilev AN, Zenin EI (1993) Chem Phys Lett 206:470

    Article  CAS  Google Scholar 

  10. Zych E, Brecher C, Glodo J (2000) J Phys:Condens Matter 12:1947

    CAS  Google Scholar 

  11. Bangaru S, Muralidharan G (2012) Phys B: Condens Matter 407:2185

    Article  CAS  Google Scholar 

  12. Bangaru S, Muralidharan G (2009) J Lumin 129:24

    Article  CAS  Google Scholar 

  13. Bangaru S (2011) Phys B: Condens Matter 406:159

    Article  CAS  Google Scholar 

  14. Bangaru S, Muralidharan G (2010) N Instr Phys Res B 268:1653

    Article  CAS  Google Scholar 

  15. Murthi YVGS, Murthy KPN, Ramasastry C (1971) J Phys C: Solid State Phys 4:1606

    Article  Google Scholar 

  16. Roth M, Halperin A (1982) J Phys Chem Solid 43:609

    Article  CAS  Google Scholar 

  17. Sastry SBS, Iswanathan VV, Ramasamy C (1972) J Phys Chem 5:3552

    CAS  Google Scholar 

  18. Bangaru S, Muralidharan G, Brahmanadhan GM (2010) J Lumin 130:618–622

    Article  CAS  Google Scholar 

  19. Vijayan C, Murthi YVGS (1989) Cryst Latt Def Amorph Mat 18:431

    CAS  Google Scholar 

  20. Zhou Y, Lin J, Yu M, Wang S, Zhnag H (2002) Mater Lett 56:628

    Article  CAS  Google Scholar 

  21. Dorewbos P (2003) J Phys: Condens Matter 15:6249

    Google Scholar 

  22. Szczurek T, Schlessinger M, Jezowska B, Trzebiatowska, Legendziewicz J, Strek W (1985) (Eds) a. Rare earth spectroscopy. World scientific, Singapore

  23. Vanpicterson L, Reid MF, Wegh RT, Sovenma S, Meijerink A (2002) Physiol Rev 365:04513

    Google Scholar 

  24. Yon H, Hong G (1997) Mater Res Bull 32:785

    Article  Google Scholar 

  25. Zorenko Y, Gorbenko V, Konstankevych I, Voloshinovshki A, Stryganyuk G, Kolobanov V, Spassky D (2005) J Lumin 114:85

    Article  CAS  Google Scholar 

  26. Lin J, Su Q (1995) J Mater Chem 5:1151

    Article  CAS  Google Scholar 

  27. Subramanian U, Mukherjee ML (1984) Cry Latt Def Amorph Mat 10:221

    CAS  Google Scholar 

  28. Flor J, Pires AM, Davolos MR, Jafelicci M Jr (2002) J Alloys Compd 344:323

    Article  CAS  Google Scholar 

  29. Vander Voort D, Blasse G (1990) J Solid State Chem 87:350

    Article  CAS  Google Scholar 

  30. Heidepriem HE, Ehrt D (2000) Opt Mater 15:7

    Article  Google Scholar 

  31. Dvan CJ, Li WF, Wu XY, Chen HH, Yang XX, Zhao JT, Fu YB, Z-mingai, Zhang GB, Shi ZS (2005) Make Sci Eng Bull 121:272

    Google Scholar 

  32. Vedda A, Fasoli M, Nikl M, Laguta VV, Mihokova E, Pejchel J, Yoshikawa A, Zhuravleva M (2009) Phys Rev B 80:045113

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (S.B) gratefully acknowledges the radiation safety division, IGCAR (Indira Gandhi Centre for Atomic Research), Kalpakkam, India for providing experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bangaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangaru, S., Saradha, K. & Muralidharan, G. Luminescent Properties of Cerium Doped Potassium Iodide Single Crystals in Response to γ-irradiation. J Fluoresc 25, 641–646 (2015). https://doi.org/10.1007/s10895-015-1548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1548-7

Keywords

Navigation