Journal of Fluorescence

, Volume 25, Issue 1, pp 25–29 | Cite as

Reduction of Nitro Group on Derivative of 1,8-Napthalimide for Quantitative Detection of Hydrogen Sulfide

  • Angela Bamesberger
  • Gunwoo Kim
  • Jeeun Woo
  • Haishi Cao


A fluorescence “turn-on” sensor (HSS) for detection of H2S was developed on the basis of NO2-NH2 reduction. HSS showed a high affinity and sensitivity to H2S over other reducing reagents, particularly for biothiols. Also, the short responding time and high linear dependence between fluorescence enhancement and H2S concentration had HSS behave as a rapid sensor for quantitatively detection of H2S in the biological level.


H2S sensor 1,8-naphthalimide Reduction 



This research is supported by Nebraska EPSCoR, URF and Summer Scholarly Activity in University of Nebraska at Kearney.

Supplementary material

10895_2014_1494_MOESM1_ESM.docx (202 kb)
ESM 1 (DOCX 201 kb)


  1. 1.
    Stein A, Bailey SM (2013) Redox biology of hydrogen sulfide: implication for physiology pathophysiology, and pharmacology. Redox Bio 1:32–39CrossRefGoogle Scholar
  2. 2.
    Ling L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187CrossRefGoogle Scholar
  3. 3.
    Fu L-F, Lu M, Wong PTT, Bian J-S (2011) Hydrogen sulfide: neurophysiology and neuropathology. Antiox Redox Sign 15:405–419CrossRefGoogle Scholar
  4. 4.
    Li L, Moore PL (2008) Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air. Trends Pharmacol Sci 29:84–90PubMedCrossRefGoogle Scholar
  5. 5.
    Whiteman M, Trionnaire SLE, Chopra M, Fox B, Whatmore J (2011) Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci 121:459–488PubMedCrossRefGoogle Scholar
  6. 6.
    Varaksin AA, Puschina EV (2011) Hydrogen sulfide as a regulator of systemic functions in vertebrates. Neurophysiology 43:62–72CrossRefGoogle Scholar
  7. 7.
    Ubuka T (2002) Assay methods and biological roles of labile sulfur in animal tissues. J Chromatogr B Analyt Technol Biomed Life Sci 781:227–249PubMedCrossRefGoogle Scholar
  8. 8.
    Savage JC, Gould DH (1990) Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 526:540–545PubMedCrossRefGoogle Scholar
  9. 9.
    Radford-Knoery J, Cutter GA (1993) Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection. Anal Chem 65:976–982CrossRefGoogle Scholar
  10. 10.
    Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40–51PubMedCrossRefGoogle Scholar
  11. 11.
    Lawrence NS, Davis J, Jing L, Jones TGJ, Davies SN, Compton RG (2000) The electrochemical analog of the methylene blue reaction: a novel amperometric approach to the detection of hydrogen sulfide. Electroanalysis 18:1453–1460CrossRefGoogle Scholar
  12. 12.
    Kolluru GK, Shen X, Bir SC, Kevil CG (2013) Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 35:5–20PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Demchenko AP (2009) Introduction to fluorescence sensing. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M (2011) Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew Chem Int Ed 50:10327–10329CrossRefGoogle Scholar
  15. 15.
    Xu Z, Xu L, Zhou J, Xu Y, Zhu W, Qian X (2012) A highly selective fluorescent probe for fast detection of hydrogen sulfide in aqueous solution and living cells. Chem Comm 48:10871–10873PubMedCrossRefGoogle Scholar
  16. 16.
    Cao X, Lin W, Zheng K, He L (2012) A near-infrared fluorescent turn-on probe for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of dinitrophenyl ether. Chem Comm 48:10529–10531PubMedCrossRefGoogle Scholar
  17. 17.
    Yang Y, Yin C, Huo F, Chu Y, Tong H, Chao J, Cheng F, Zheng A (2013) pH-sensitive fluorescent salicylaldehyde derivative for selective imaging of hydrogen sulfide in living cells. Sensor Actuat B-Chem 186:212–218CrossRefGoogle Scholar
  18. 18.
    Fu L, Tian F-F, Lai L, Liu Y, Harvey PD, Jiang F-L (2014) A ratiometric “two-in-one” fluorescent chemodosimeter for fluoride and hydrogen sulfide. Sensor Actuat B-Chem 193:701–707CrossRefGoogle Scholar
  19. 19.
    Bae J, Choi J, Park TJ, Chang S-K (2014) Reaction-based colorimetric and fluorogenic signaling of hydrogen sulfide using a 7-nitro-2,1,3-benzoxadiazole–coumarin conjugate. Tetrahedron Lett 55:1171–1174CrossRefGoogle Scholar
  20. 20.
    Cao H, Chang V, Hernandez R, Heagy MD (2005) Matrix library screening of substituted N-Aryl-1,8-naphthalimides reveals new dual fluorescent dyes and unusually bright pyridine derivatives. J Org Chem 70:4929–4934PubMedCrossRefGoogle Scholar
  21. 21.
    Wang J, Yang L, Hou C, Cao H (2012) A new N-imidazol-1,8-naphthalimide based fluorescence sensor for fluoride detection. Org Biomol Chem 10:6271–6274PubMedCrossRefGoogle Scholar
  22. 22.
    Bamesbergera A, Schwartza C, Song Q, Han W, Wang Z, Cao H (2014) Rational design of a rapid fluorescent approach for detection of inorganic fluoride in MeCN-H2O: a new fluorescence switch based on N-aryl-1,8-naphthalimide. New J Chem 38:884–888CrossRefGoogle Scholar
  23. 23.
    Wang H, Xu H, Xue L, Shi Y, Li X (2011) A naphthalimide fluorophore with efficient intramolecular PET and ICT process: application in molecular logic. Org Biomol Chem 9:5436–5444PubMedCrossRefGoogle Scholar
  24. 24.
    Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemisors. Chem Soc Rev 39:3936–3953PubMedCrossRefGoogle Scholar
  25. 25.
    Lin VS, Lippert AR, Chang CJ (2013) Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc Natl Acad Sci 110:7131–7135PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Angela Bamesberger
    • 1
  • Gunwoo Kim
    • 1
  • Jeeun Woo
    • 1
  • Haishi Cao
    • 1
  1. 1.Department of ChemistryUniversity of Nebraska at KearneyKearneyUSA

Personalised recommendations