Skip to main content
Log in

Reduction of Nitro Group on Derivative of 1,8-Napthalimide for Quantitative Detection of Hydrogen Sulfide

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A fluorescence “turn-on” sensor (HSS) for detection of H2S was developed on the basis of NO2-NH2 reduction. HSS showed a high affinity and sensitivity to H2S over other reducing reagents, particularly for biothiols. Also, the short responding time and high linear dependence between fluorescence enhancement and H2S concentration had HSS behave as a rapid sensor for quantitatively detection of H2S in the biological level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Stein A, Bailey SM (2013) Redox biology of hydrogen sulfide: implication for physiology pathophysiology, and pharmacology. Redox Bio 1:32–39

    Article  CAS  Google Scholar 

  2. Ling L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187

    Article  Google Scholar 

  3. Fu L-F, Lu M, Wong PTT, Bian J-S (2011) Hydrogen sulfide: neurophysiology and neuropathology. Antiox Redox Sign 15:405–419

    Article  Google Scholar 

  4. Li L, Moore PL (2008) Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air. Trends Pharmacol Sci 29:84–90

    Article  PubMed  Google Scholar 

  5. Whiteman M, Trionnaire SLE, Chopra M, Fox B, Whatmore J (2011) Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci 121:459–488

    Article  CAS  PubMed  Google Scholar 

  6. Varaksin AA, Puschina EV (2011) Hydrogen sulfide as a regulator of systemic functions in vertebrates. Neurophysiology 43:62–72

    Article  CAS  Google Scholar 

  7. Ubuka T (2002) Assay methods and biological roles of labile sulfur in animal tissues. J Chromatogr B Analyt Technol Biomed Life Sci 781:227–249

    Article  CAS  PubMed  Google Scholar 

  8. Savage JC, Gould DH (1990) Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 526:540–545

    Article  CAS  PubMed  Google Scholar 

  9. Radford-Knoery J, Cutter GA (1993) Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection. Anal Chem 65:976–982

    Article  CAS  Google Scholar 

  10. Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40–51

    Article  CAS  PubMed  Google Scholar 

  11. Lawrence NS, Davis J, Jing L, Jones TGJ, Davies SN, Compton RG (2000) The electrochemical analog of the methylene blue reaction: a novel amperometric approach to the detection of hydrogen sulfide. Electroanalysis 18:1453–1460

    Article  Google Scholar 

  12. Kolluru GK, Shen X, Bir SC, Kevil CG (2013) Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 35:5–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Demchenko AP (2009) Introduction to fluorescence sensing. Springer, New York

    Book  Google Scholar 

  14. Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M (2011) Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew Chem Int Ed 50:10327–10329

    Article  CAS  Google Scholar 

  15. Xu Z, Xu L, Zhou J, Xu Y, Zhu W, Qian X (2012) A highly selective fluorescent probe for fast detection of hydrogen sulfide in aqueous solution and living cells. Chem Comm 48:10871–10873

    Article  CAS  PubMed  Google Scholar 

  16. Cao X, Lin W, Zheng K, He L (2012) A near-infrared fluorescent turn-on probe for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of dinitrophenyl ether. Chem Comm 48:10529–10531

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Yin C, Huo F, Chu Y, Tong H, Chao J, Cheng F, Zheng A (2013) pH-sensitive fluorescent salicylaldehyde derivative for selective imaging of hydrogen sulfide in living cells. Sensor Actuat B-Chem 186:212–218

    Article  CAS  Google Scholar 

  18. Fu L, Tian F-F, Lai L, Liu Y, Harvey PD, Jiang F-L (2014) A ratiometric “two-in-one” fluorescent chemodosimeter for fluoride and hydrogen sulfide. Sensor Actuat B-Chem 193:701–707

    Article  CAS  Google Scholar 

  19. Bae J, Choi J, Park TJ, Chang S-K (2014) Reaction-based colorimetric and fluorogenic signaling of hydrogen sulfide using a 7-nitro-2,1,3-benzoxadiazole–coumarin conjugate. Tetrahedron Lett 55:1171–1174

    Article  CAS  Google Scholar 

  20. Cao H, Chang V, Hernandez R, Heagy MD (2005) Matrix library screening of substituted N-Aryl-1,8-naphthalimides reveals new dual fluorescent dyes and unusually bright pyridine derivatives. J Org Chem 70:4929–4934

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Yang L, Hou C, Cao H (2012) A new N-imidazol-1,8-naphthalimide based fluorescence sensor for fluoride detection. Org Biomol Chem 10:6271–6274

    Article  CAS  PubMed  Google Scholar 

  22. Bamesbergera A, Schwartza C, Song Q, Han W, Wang Z, Cao H (2014) Rational design of a rapid fluorescent approach for detection of inorganic fluoride in MeCN-H2O: a new fluorescence switch based on N-aryl-1,8-naphthalimide. New J Chem 38:884–888

    Article  Google Scholar 

  23. Wang H, Xu H, Xue L, Shi Y, Li X (2011) A naphthalimide fluorophore with efficient intramolecular PET and ICT process: application in molecular logic. Org Biomol Chem 9:5436–5444

    Article  CAS  PubMed  Google Scholar 

  24. Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemisors. Chem Soc Rev 39:3936–3953

    Article  CAS  PubMed  Google Scholar 

  25. Lin VS, Lippert AR, Chang CJ (2013) Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc Natl Acad Sci 110:7131–7135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by Nebraska EPSCoR, URF and Summer Scholarly Activity in University of Nebraska at Kearney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishi Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamesberger, A., Kim, G., Woo, J. et al. Reduction of Nitro Group on Derivative of 1,8-Napthalimide for Quantitative Detection of Hydrogen Sulfide. J Fluoresc 25, 25–29 (2015). https://doi.org/10.1007/s10895-014-1494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1494-9

Keywords

Navigation