Journal of Fluorescence

, Volume 25, Issue 1, pp 167–172 | Cite as

Energy Transfer Studies between Trp Residues of Three Lipocalin Proteins Family, α1-Acid Glycoprotein, (Orosomucoid), β-Lactoglobulin and Porcine Odorant Binding Protein and the Fluorescent Probe, 1-Aminoanthracene (1-AMA)

  • Jihad R. Albani
  • Loïc Bretesche
  • Julie Vogelaer
  • Daniel Kmiecik


Energy transfer studies between Trp residues of α1-acid glycoprotein, β-lactoglobulin and porcine odorant binding protein (OBP) and the fluorescent probe 1-aminoanthracene (1-AMA) were performed. 1-AMA binds to the hydrophobic binding sites of the three proteins inducing a decrease in the fluorescence intensity of the Trp residues accompanied by an increase of that of 1-AMA. Our results indicate that 1-AMA is in close contact with hydrophobic tryptophan residue of β-lactoglobulin (Trp 19) to the difference of its binding to OBP, where Trp residues are far from the pocket and to α1-acid glycoprotein where three Trp residues are present at different areas of the protein.


α1-acid glycoprotein β-Lactoglobulin Porcine odorant binding protein (OBP) Tryptophan 1- Aminoanthracene (1-AMA) Förster energy transfer 


  1. 1.
    Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14PubMedCentralPubMedGoogle Scholar
  2. 2.
    Flower DR, North ACT, Attwood TK (1991) Mouse oncogene protein 24p3 is a member of the lipocalin protein family. Biochem Biophys Res Commun 180:69–74PubMedCrossRefGoogle Scholar
  3. 3.
    Flower DR, North ACT, Attwood TK (1993) Structure and sequence relationships in the lipocalins and related proteins. Protein Sci 2:753–761PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24PubMedCrossRefGoogle Scholar
  5. 5.
    Flower DR (1995) Multiple molecular recognition properties of the lipocalin protein family. J Mol Recog 8:185–195CrossRefGoogle Scholar
  6. 6.
    Campanacci V, Krieger J, Bette S, Sturgis JN, Lartigue A, Cambillau C, Breer H, Tegoni M (2001) Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J Biol Chem 276:20078–20084PubMedCrossRefGoogle Scholar
  7. 7.
    Löbel D, Strotmann J, Jacob M, Breer H (2001) Identification of a third rat odorant binding protein (OBP3). Chem Senses 26:673–680PubMedCrossRefGoogle Scholar
  8. 8.
    Ramoni R, Vincent F, Ashcroft AE, Accornero P, Grolli S, Valencia C, Tegoni M, Cambillau C (2002) Control of domain swapping in bovine odorant-binding protein. Biochem J 365:739–748PubMedCentralPubMedGoogle Scholar
  9. 9.
    Vincent F, Ramoni R, Spinelli S, Grolli S, Tegoni M, Cambillau C (2004) Crystal structures of bovine odorant-binding protein in complex with odorant molecules. Eur J Biochem 27:3832–3842CrossRefGoogle Scholar
  10. 10.
    Nespoulous C, Briand L, Delage M-M, Tran V, Pernollet J-C (2004) Odorant binding and conformational changes of a rat odorant-binding protein. Chem Senses 29:189–198PubMedCrossRefGoogle Scholar
  11. 11.
    Johansson JS, Manderson GA, Ramoni R, Grolli S, Eckenhoff RG (2005) Binding of the volatile general anesthetics halothane and isoflurane to a mammalian β-barrel protein. FEBS J 272:573–581PubMedCrossRefGoogle Scholar
  12. 12.
    Wei Y, Brandazza A, Pelosi P (2008) Binding of polycyclic aromatic hydrocarbons to mutants of odorant-binding protein: A first step towards biosensors for environmental monitoring. Biochim Biophys Acta 1784:666–671PubMedCrossRefGoogle Scholar
  13. 13.
    Boudreau MD, Taylor HW, Baker DG, Means JC (2006) Dietary exposure to 2-aminoanthracene induces morphological and immunocytochemical changes in pancreatic tissues of Fisher-344 rats. Toxicol Sci 93:50–61PubMedCrossRefGoogle Scholar
  14. 14.
    Kmiecik D, Albani JR (2010) Effect of 1-aminoanthracene (1-AMA) binding on the structure of three lipocalin proteins, the dimeric β-lactoglobulin, the dimeric odorant binding protein and the monomeric α1 – acid glycoprotein. Fluorescence spectra and lifetimes studies. J Fluoresc 20:973–983PubMedCrossRefGoogle Scholar
  15. 15.
    Brownlow S, Morais Cabral JH, Cooper R, Flower RD, Yewdall SJ, Polikarpov I, North ACT, Sawyer L (1995) Bovine β-lactoglobulin at 1.8 Å resolution—still an enigmatic lipocalin. Structure 5:481–495CrossRefGoogle Scholar
  16. 16.
    Del Monte M, Andreini L, Revoltella R, Pelosi P (1991) Purification and characterization of two odorant binding proteins from nasal tissue of rabbit and pig. Comp Biochem Physiol 99B:445–451Google Scholar
  17. 17.
    Paolini S, Tanfani S, Fini C, Bertoli F, Pelosi P (1999) Porcine odorant binding protein: structural stability and ligand affinities measured by fourier-transform infrared spectroscopy and fluorescence spectroscopy. Biochim Biophys Acta 1431:179–188PubMedCrossRefGoogle Scholar
  18. 18.
    Burova TV, Choiset Y, Jankowski CK, Haertlé T (1999) Conformational stability and binding properties of porcine odorant binding protein. Biochemistry 38:15043–15051PubMedCrossRefGoogle Scholar
  19. 19.
    Spinelli S, Ramoni R, Grolli S, Bonicel J, Cambillau C, Tegoni M (1998) The structure of the monomeric porcine odorant binding protein sheds light on the domain swapping mechanism. Biochemistry 37:7913–7918PubMedCrossRefGoogle Scholar
  20. 20.
    Dente L, Pizza MG, Metspaln A, Cortese R (1987) Structure and expression of the genes coding for human α1-acid glycoprotein. EMBO J 6:2280–2296Google Scholar
  21. 21.
    Kute T, Westphal U (1976) Steroid-protein interactions. XXXIV. Chemical modification of alpha1-acid glycoprotein for characterization of the progesterone binding site. Biochim Biophys Acta 420:195–213PubMedCrossRefGoogle Scholar
  22. 22.
    Schmid K, Kaufmann H, Isemura S, Bauer F, Emura J, Motoyama T, Ishiguro M, Nanno S (1973) Structure of α1 -acid glycoprotein. The complete amino acid sequence, multiple amino acid substitutions, and homology with the immunoglobulins. Biochemistry 12:2711–2724PubMedCrossRefGoogle Scholar
  23. 23.
    Hof M, Vajda S, Fidler V, Karpenko V (1996) Picosecond tryptophan fluorescence of human blood serum orosomucoid. Collect Czech Chem Commun 61:808–818CrossRefGoogle Scholar
  24. 24.
    Albani JR (2001) Effect of binding of Calcofluor White on the carbohydrate residues of α1-acid glycoprotein (orosomucoid) on the structure and dynamics of the protein moiety. A fluorescence study. Carbohydr Res 334:141–151PubMedCrossRefGoogle Scholar
  25. 25.
    Albani JR (2004) Tertiary structure of human α1-acid glycoprotein (orosomucoid). Straightforward fluorescence experiments revealing the presence of a binding pocket. Carbohydr Res 339:607–612PubMedCrossRefGoogle Scholar
  26. 26.
    Albani JR (1999) New insights in the conformation of α1-acid glycoprotein (orosomucoid). Quenching resolved emission anisotropy studies. Spectrochim Acta A 55:2353–2360CrossRefGoogle Scholar
  27. 27.
    De Ceukeleire M, Albani JR (2002) Interaction between carbohydrate residues of α1- acid glycoprotein (orosomucoid) and progesterone. A fluorescence study. Carbohydr Res 337:1405–1410PubMedCrossRefGoogle Scholar
  28. 28.
    Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Albani JR (1992) Motions studies of the human α1-acid glycoprotein (orosomucoid) followed by red-edge excitation spectra and polarization of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tryptophan residues. Biophys Chem 44:129–137PubMedCrossRefGoogle Scholar
  30. 30.
    Lakowicz JR (1999) Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum, New YorkCrossRefGoogle Scholar
  31. 31.
    Albani JR (2007) Principles and applications of fluorescence spectroscopy. Blackwell, LondonCrossRefGoogle Scholar
  32. 32.
    Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437:55CrossRefGoogle Scholar
  33. 33.
    Albani JR, Vogelaer J, Bretesche L, Kmiecik D (2014) Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence. J Pharm Biomed Anal 91:144–150PubMedCrossRefGoogle Scholar
  34. 34.
    Albani JR (2007) New insights in the interpretation of tryptophan fluorescence. J Fluoresc 17:406–417PubMedCrossRefGoogle Scholar
  35. 35.
    Albani JR, Vos R, Willaert K, Engelborghs Y (1995) Interaction between human α1-acid glycoprotein (orosomucoid) and 2-p-toluidinylnaphthalene-6-sulfonate. Photochem Photobiol 62:30–34PubMedCrossRefGoogle Scholar
  36. 36.
    Albani JR (2003) Förster energy-transfer studies between Trp residues of α1-acid glycoprotein (orosomucoid) and the glycosylation site of the protein. Carbohydr Res 338:2233–2236PubMedCrossRefGoogle Scholar
  37. 37.
    Albani JR (2010) Fluorescence properties of porcine odorant binding protein Trp 16 residue. J Lumin 130:2166–2170CrossRefGoogle Scholar
  38. 38.
    Albani JR (2003) Relation between the secondary structure of carbohydrate residues of α1-acid glycoprotein (orosomucoid) and the fluorescence of the protein. Carbohydr Res 338:1097–1101PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jihad R. Albani
    • 1
  • Loïc Bretesche
    • 1
  • Julie Vogelaer
    • 1
  • Daniel Kmiecik
    • 1
  1. 1.Laboratoire de Biophysique MoléculaireUniversité Lille Nord de France, Université de Lille 1Villeneuve d’AscqFrance

Personalised recommendations