Journal of Fluorescence

, Volume 24, Issue 6, pp 1701–1714 | Cite as

Synthesis, Micellization Behaviour, DNA/RNA Binding and Biological Studies of a Surfactant Cobalt(III) Complex With Dipyrido[3,2-a:2′,4′-c](6,7,8,9-tetrahydro)phenazine

  • Karuppiah Nagaraj
  • Krishnan Senthil Murugan
  • Pilavadi Thangamuniyandi
  • Subramanian Sakthinathan


A new surfactant cobalt(III) complex, cis-[Co(dpqc)2(DA)2](ClO4)3, where dpqc = dipyrido[3,2-a:2′,4′-c](6,7,8,9-tetrahydro)phenazine and DA = dodecylamine, has been synthesized and characterized by elemental analysis, UV-Visible, IR and NMR spectra. The critical micelle concentration (CMC) value of this surfactant cobalt(III) complex in aqueous solution was obtained from conductance measurements. The conductivity data (at 303, 308, 313, 318 and 323 K) were used for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG0 m, ΔH0 m and ΔS0 m). Absorption, fluorescence, cyclic voltammetry, circular dichroism and viscosity experiments have been carried out to study the interaction of the surfactant cobalt(III) complex with DNA and RNA. The results suggest that the complex can bind to nucleic acids by intercalation via both the dpqc ligand and the long aliphatic chain of the complex into the base pairs of DNA/RNA. In vitro cytotoxicity experiments show that the surfactant cobalt(III) complex exhibits cytotoxic activity against the HepG2 (human hepatocellular liver carcinoma) tumor cell lines and found to be active.


Surfactant cobalt(III) complex Critical micelle concentration DNA RNA Anticancer Intercalation Hydrophobicity 



We are grateful to the UGC- COSIST and DST-FIST programmes of the Department of Chemistry, Bharathidasan University, and UGC-RFSMS fellowship to one of the authors, K. Nagaraj, by Bharathidasan University. Financial assistance from the CSIR (Grant No. 01(2461)/11/EMR-II), DST (Grant No. SR/S1/IC-13/2009) and UGC (Grant No. 41-223/2012(SR) sanctioned to S. Arunachalam are also gratefully acknowledged.

Supplementary material

10895_2014_1457_MOESM1_ESM.docx (53 kb)
SI Fig. 1 (DOCX 52 kb)
10895_2014_1457_MOESM2_ESM.docx (82 kb)
SI Fig. 2 (DOCX 82 kb)
10895_2014_1457_MOESM3_ESM.docx (50 kb)
SI Fig. 3 (DOCX 50 kb)
10895_2014_1457_MOESM4_ESM.docx (86 kb)
SI Fig. 4 (DOCX 85 kb)
10895_2014_1457_MOESM5_ESM.docx (35 kb)
SI Fig. 5 (DOCX 34 kb)
10895_2014_1457_MOESM6_ESM.docx (34 kb)
SI Fig. 6 (DOCX 34 kb)
10895_2014_1457_MOESM7_ESM.docx (16 kb)
SI Table 1 (DOCX 16 kb)
10895_2014_1457_MOESM8_ESM.docx (16 kb)
SI Table 2 (DOCX 16 kb)
10895_2014_1457_MOESM9_ESM.docx (15 kb)
SI Table 3 (DOCX 15 kb)


  1. 1.
    Hegg EL, Burstyn JN (1998) Coord Chem Rev 173:133–165CrossRefGoogle Scholar
  2. 2.
    Komiyama M, Sumaoka J (1998) Curr Opin Chem Biol 2:751–757PubMedCrossRefGoogle Scholar
  3. 3.
    Norden B, Lincoln P, Akerman B, Tuite E (1996) In: Sigel A, Sigel H (eds) Marcel Dekker, New York. 33:177–252Google Scholar
  4. 4.
    Chan S, Wong WT (1995) Coord Chem Rev 138:219–296CrossRefGoogle Scholar
  5. 5.
    Prativel GJ, Bernadou B, Meunier S (1998) Adv Inorg Chem 45:251CrossRefGoogle Scholar
  6. 6.
    Liang F, Wang P, Zhou X, Li T, Li ZY, Lin HK, Gao DZ, Zheng CY, Wu CT (2004) Bioorg Med Chem Lett 14:1901–1904PubMedCrossRefGoogle Scholar
  7. 7.
    Gallego J, Varani G (2001) Acc Chem Res 34:836–843PubMedCrossRefGoogle Scholar
  8. 8.
    Chow CS, Barton JK (1992) Biochemistry 31:5423–5429PubMedCrossRefGoogle Scholar
  9. 9.
    Morgan RJ, Chatterjee S, Baker AD, Strekas TC (1991) Inorg Chem 30:2687–2693CrossRefGoogle Scholar
  10. 10.
    Zou XH, Ye BH, Li H, Zhang QL, Chao H, Liu JG, Ji LN (2000) J Biol Inorg Chem 6:143–150CrossRefGoogle Scholar
  11. 11.
    Chao H, Mei WJ, Huang QW, Ji LN (2002) J Inorg Biochem 92:165–170PubMedCrossRefGoogle Scholar
  12. 12.
    Radler JO, Koltover I, Salditt TCR (1997) Science 275:810–814PubMedCrossRefGoogle Scholar
  13. 13.
    Khun PS, Levin Y, Barbosa MC (1999) Phys A Stat Mech Appl 274:8–18CrossRefGoogle Scholar
  14. 14.
    Akao T, Fukumoto T, Ihara HA (1996) FEBS Lett 391:215–219PubMedCrossRefGoogle Scholar
  15. 15.
    Reimer DL, Zhang YP, Kong S, Wheeler JJ, Graham RW, Bally MB (1995) Health Environ Res Online 34:12877Google Scholar
  16. 16.
    Dan N (1997) Biophys J 73:1842–1846PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Barreleiro PCA, Olofsson G, Alexandridis P (2000) J Phys Chem B 104:7795–7802CrossRefGoogle Scholar
  18. 18.
    Melnikov SM, Sergeyev VG, Yoshikawa K (1995) J Am Chem Soc 117:2401–2408CrossRefGoogle Scholar
  19. 19.
    Melnikov SM, Sergeyev VG, Yoshikawa K (1995) J Am Chem Soc 117:9951–9956CrossRefGoogle Scholar
  20. 20.
    Lasic DD, Strey H, Stuart MCA, Podgornik R, Pederik PM (1995) J Am Chem Soc 119:832–833CrossRefGoogle Scholar
  21. 21.
    Matulis D, Rouzina I, Bloomfield VA (2002) J Am Chem Soc 124:7331–7342PubMedCrossRefGoogle Scholar
  22. 22.
    Silvius JR (1991) Biochim Biophys Acta (BBA) Biomembr 1070:51–59CrossRefGoogle Scholar
  23. 23.
    Prager MD, Baechtel FS, Gordon WC, Maullin S, Steinberg J, Sanderson A, Tom BH, Six HR (eds) (1980) Elsevier, New York, 39Google Scholar
  24. 24.
    Menger FM, Littau CAJ (1993) J Am Chem Soc 115:10083–10090CrossRefGoogle Scholar
  25. 25.
    Menger FM, Littau CA (1997) J Am Chem Soc 113:1451–1452CrossRefGoogle Scholar
  26. 26.
    Shukla D, Tyagi VK (2006) J Oleo Sci 55:381–390CrossRefGoogle Scholar
  27. 27.
    Zana R (2002) Adv Colloid Inter Sci 97:205–253CrossRefGoogle Scholar
  28. 28.
    Zana T (2002) J Colloid Inter Sci 248:203–220CrossRefGoogle Scholar
  29. 29.
    Hamaguchi J, Geiduschek EP (1962) J Am Chem Soc 84:1329–1338CrossRefGoogle Scholar
  30. 30.
    Geck P, Nasz I (1983) Anal Biochem 135:264–268PubMedCrossRefGoogle Scholar
  31. 31.
    Bhairi SM, Mohan C Calbiochem Detergents A guide to the properties and uses of detergents in biological systems, EMD Biosciences San Diego CAGoogle Scholar
  32. 32.
    Dias RS, Innerlohinger J, Glatter O, Miguel MG, Lindman B (2005) J Phys Chem B 109:10458–10463PubMedCrossRefGoogle Scholar
  33. 33.
    Meidan VM, Cohen JS, Amariglio N, Hirsch-Lerner D, Barenholz Y (2000) Biochim Biophys Acta Biomembr 1464:251–261CrossRefGoogle Scholar
  34. 34.
    Srinivasan S, Annaraj J, Athappan P (2005) J Inorg Biochem 99:876–882PubMedCrossRefGoogle Scholar
  35. 35.
    Li WX, Hui C, Hong L, Lan HX, Jun LY, Feng TL, Nian JL (2004) J Inorg Biochem 98:1143–1147PubMedCrossRefGoogle Scholar
  36. 36.
    Senthil kumar R, Arunachalam S Biophy Chem 136:136–144Google Scholar
  37. 37.
    Senthilkumar R, Arunachalam S, Periasamy VS, Paul CP, Riyasdeen A, Akbarsha MA (2009) J Inorg Biochem 103:117–127CrossRefGoogle Scholar
  38. 38.
    Kumaraguru N, Santhakumar K, Arunachalam S, Arumugham MN (2006) Polyhedron 25:3253–3260CrossRefGoogle Scholar
  39. 39.
    Wang XL, Chao H, Li H, Hong XL, Liu YJ, Tan LF, Ji LN (2004) J Inorg Biochem 98:1143–1193PubMedCrossRefGoogle Scholar
  40. 40.
    Shimakoshi H, Kaieda T, Matsuo T, Sato H, Hisaeda Y (2003) Tetrahedron Lett 44:5197–5199CrossRefGoogle Scholar
  41. 41.
    Zhang QL, Liu JH, Ren XZ, Xu H, Huang Y, Liu JZ, Ji LN (2003) J Inorg Biochem 95:194–198PubMedCrossRefGoogle Scholar
  42. 42.
    Vaidyanathan VG (2003) Nair BU J Inorg Biochem 94:121–126CrossRefGoogle Scholar
  43. 43.
    Barton JK, Raphael A (1985) Proc Natl Acad Sci U S A 82:6460–6464PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Nagaraj K, Arunachalam S (2013) New J Chem. doi: 10.1039/c3nj00832k Google Scholar
  45. 45.
    Nagaraj K, Arunachalam S (2013) Z Phys Chem 227:1–19CrossRefGoogle Scholar
  46. 46.
    Nagaraj K, Sakthinathan S, Arunachalam S (2013) J Floures. doi: 10.1007/s10895-013-1332-5 Google Scholar
  47. 47.
    Tamilselvi P, Palaniandavar M (2002) Inorg Chim Acta 337:420–428CrossRefGoogle Scholar
  48. 48.
    Zhang QL, Liu JG, Xu H, Li H, Liu JZ, Zhou H, Qu LH, Ji LN (2001) Polyhedron 20:3049–3055CrossRefGoogle Scholar
  49. 49.
    Indumathy R, Kanthimathi M, Weyhermuller T, Nair BU (2008) Polyhedron 27:3443–3450CrossRefGoogle Scholar
  50. 50.
    Marmur J (1961) J Mol Biol 3:208–218CrossRefGoogle Scholar
  51. 51.
    Reichmann MF, Rice SA, Thomas CA, Doty P (1993) J Am Chem Soc 76:3047–3053CrossRefGoogle Scholar
  52. 52.
    Collins JG, Sleeman AD, Aldrich-Wright JR, Greguric I, Hambley TW (1998) Inorg Chem 37:3133–3141CrossRefGoogle Scholar
  53. 53.
    Wu JZ, Ye BH, Wang L, Ji LN, Zhou JY, Li RH, Zhou ZY (1997) J Chem Soc Dalton Trans 1395–1401Google Scholar
  54. 54.
    Cai J, Yue Y, Rui D, Zhang Y, Liu S, Wu C (2011) Macromolecules 44:2050–2057CrossRefGoogle Scholar
  55. 55.
    Ghosh S, Barve AC, Kumbhar AA, Kumbhar AS, Puranik VG, Datar PA, Sonawane UB, Joshi RR (2006) J Inorg Biochem 100:331–343PubMedCrossRefGoogle Scholar
  56. 56.
    Vlcek AA (1967) Inorg Chem 6:1425–1427CrossRefGoogle Scholar
  57. 57.
    Kitson RE (1950) Anal Chem 22:664–667CrossRefGoogle Scholar
  58. 58.
    Zana R (1980) J Colloid Inter Sci 78:330–337CrossRefGoogle Scholar
  59. 59.
    Izumrudov VA, Zhiryakova MV, Goulko AA (2002) Langmuir 18:10348–10356CrossRefGoogle Scholar
  60. 60.
    Kelly TM, Tossi AB, McConnell DJ, Strekas TC (1985) Nucleic Acids Res 13:6017–6029PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Yasui Y, Shimura Y (1963) Bull Chem Jpn 36:1286–1293CrossRefGoogle Scholar
  62. 62.
    Nyholm RS, Tobe ML (1956) J Chem Soc 16911707Google Scholar
  63. 63.
    Oulaghan B (1978) Inorg Chem 17:2197–2202CrossRefGoogle Scholar
  64. 64.
    Fordyee WA, Sherdan PS, Zinato E, Riccieri P, Adamson AA (1977) Inorg Chem 16:1154–1159CrossRefGoogle Scholar
  65. 65.
    Jaeger DA, Reddy VB, Arulsamy N, Bohle DS (1998) Langmuir 14:2589–2592CrossRefGoogle Scholar
  66. 66.
    Shanthakumar K, Kumaraguru N, Arunachalam S, Arumugam MN (2006) Polyhedron 25:1507–1513CrossRefGoogle Scholar
  67. 67.
    Castelleno S, Gunther H, Ebersole S (1965) J Phys Chem 69:4166–4176CrossRefGoogle Scholar
  68. 68.
    Mukerjee P (1962) J Phys Chem 66:1375–1376CrossRefGoogle Scholar
  69. 69.
    Galan JJ, Perez AG, Rodriquez JR (2003) J Therm Anal Calorim 72:465–470CrossRefGoogle Scholar
  70. 70.
    Perez AG, Castillo JD, Czapkiewicz T, Rodriquez JR (2002) Colloid Polymr Sci 280:503–508CrossRefGoogle Scholar
  71. 71.
    Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051–3058CrossRefGoogle Scholar
  72. 72.
    Long EC, Barton JK (1990) Acc Chem Res 23:271–273CrossRefGoogle Scholar
  73. 73.
    Nagaraj K, Arunachalam S (2013) Int J Biol Macro Mol 62:273–280CrossRefGoogle Scholar
  74. 74.
    Song Y, Wu Q, Yang P, Luan N, Wang L, Liu Y (2006) J Inorg Biochem 100:1685–1691PubMedCrossRefGoogle Scholar
  75. 75.
    Carter MT, Rodriguez M, Bard AJ (1989) J Am Chem Soc 111:8901CrossRefGoogle Scholar
  76. 76.
    Nehru S, Arunachalam S, Renganathan A, Premkumar K (2013) J Biomol Stru DynGoogle Scholar
  77. 77.
    Tselepi-Kalouli E, Katsaros N (1989) J Inorg Biochem 37:271–282PubMedCrossRefGoogle Scholar
  78. 78.
    Cory M, McKee DD, Kagan J, Henry DW, Miller JA (1985) J Am Chem Soc 107:2528–2536CrossRefGoogle Scholar
  79. 79.
    Kumar CV, Asuncion EH J Am Chem Soc 115:8547–8553Google Scholar
  80. 80.
    Waring MJ (1965) J Mol Biol 13:269–282PubMedCrossRefGoogle Scholar
  81. 81.
    Neyhart GA, Grover N, Smith SR, Kalsbeck WA, Fairley TA, Cory M, Thorp HH (1993) J Am Chem Soc 115:4423–4428CrossRefGoogle Scholar
  82. 82.
    McGhee JD (1976) Biopolymers 15:1345–1375PubMedCrossRefGoogle Scholar
  83. 83.
    Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Biochemistry 32:2573–2584PubMedCrossRefGoogle Scholar
  84. 84.
    Chan HL, Liu HQ, Tzeng BC, You YS, Peng SM, Yang M, Che CM (2002) Inorg Chem 41:3161–3171PubMedCrossRefGoogle Scholar
  85. 85.
    Gao F, Chao H, Zhou F, Xu LC, Zheng KC, Ji LN (2007) Helv Chim Acta 90:36–51CrossRefGoogle Scholar
  86. 86.
    Bhattacharya S, Mandal SS (1998) Biochemistry 37:7764–7777PubMedCrossRefGoogle Scholar
  87. 87.
    Lincoln P, Tuite E, Norden B (1997) J Am Chem Soc 119:1454–1455CrossRefGoogle Scholar
  88. 88.
    Satyanarayana S, Dabroniak JC, Chaires JB (1992) Biochemistry 31:9319–9324PubMedCrossRefGoogle Scholar
  89. 89.
    Sangeetha Gowda KR, Bhoiya Naik HS, Vinay Kumar B, Sudhamani CN, Sudeep HV, Avikumar Naik TR, Krishnamurthy G (2013) Spectro Chim Acta A Mol Biomol Spectrosc 105:229–237CrossRefGoogle Scholar
  90. 90.
    Zhao G, Lin H, Zhu S, Sun H, Chen Y (1998) J Inorg Biochem 70:219–226PubMedCrossRefGoogle Scholar
  91. 91.
    Lakowicz JR, Webber G (1973) Biochemistry 12:4161–4170PubMedCrossRefGoogle Scholar
  92. 92.
    Barton JK, Danishefsky AT, Goldberg JMJ (1984) Am Chem Soc 106:2172–2176CrossRefGoogle Scholar
  93. 93.
    Coyle B, Kinsella P, McCann M, Devereux M, OConnor R, Clynes M, Kavanagh K (2004) Induction of apoptosis in yeast and mammalian cells by exposure to 1,10-phenanthroline metal complexes. Toxicol Vitro Int J Published Assoc BIBRA 18:63CrossRefGoogle Scholar
  94. 94.
    Coyle B, McCann M, Kavanagh K, Devereux M, Geraghty M (2003) Biometals 16:321–329PubMedCrossRefGoogle Scholar
  95. 95.
    Osinsky S, Levitin I, Bubnovskaya L, Sigan A, Ganusevich I (2004) Exp Oncol 26:140–144PubMedGoogle Scholar
  96. 96.
    Badawi AM, Mekawias M, Mohamed MZ, Khowdairy MM (2007) J Can Res Ther 3:198–206CrossRefGoogle Scholar
  97. 97.
    Baskic D, Popovic S, Ristic P, Arsenijevic NN (2006) Cell Biol Int 30:924–932PubMedCrossRefGoogle Scholar
  98. 98.
    Stander A, Marais S, Stivaktas V (2009) J Ethnopharmacol 124:45–60PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Karuppiah Nagaraj
    • 1
  • Krishnan Senthil Murugan
    • 2
  • Pilavadi Thangamuniyandi
    • 3
  • Subramanian Sakthinathan
    • 1
  1. 1.School of ChemistryBharathidasan UniversityTiruchirapalliIndia
  2. 2.Post Graduate and Research Development of ChemistryVivekananda CollegeMaduraiIndia
  3. 3.Department of Polymer ScienceUniversity of MadrasChennaiIndia

Personalised recommendations