Skip to main content

Advertisement

Log in

Location of Novel Benzanthrone Dyes in Model Membranes as Revealed by Resonance Energy Transfer

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Förster resonance energy transfer (FRET) between anthrylvinyl-labeled phosphatidylcholine (AV-PC) as a donor and newly synthesized benzanthrones (referred to here as A8, A6, AM12, AM15 and AM18) as acceptors has been examined to gain insight into molecular level details of the interactions between benzanthrone dyes and model lipid membranes composed of zwitterionic lipid phosphatidylcholine and its mixtures with anionic lipids cardiolipin (CL) and phosphatidylglycerol (PG). FRET data were quantitatively analyzed in terms of the model of energy transfer in two-dimensional systems taking into account the distance dependence of orientation factor. Evidence for A8 location in phospholipid headgroup region has been obtained. Inclusion of CL and PG into PC bilayer has been found to induce substantial relocation of A6, AM12, AM15 and AM18 from hydrophobic membrane core to lipid-water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dobretsov G, Dmitriev V, Pirogova L, Petrov V, Vladimirov Y (1978) 4-Dimethylaminochalcone and 3-methoxybenzanthrone as fluorescent probes to study biomembranes. III Relationship between state of hydration shell of membrane and state of phospholipids. Stud Biophys 71:189–196

    CAS  Google Scholar 

  2. Yang X, Liu W-H, Jin W-J, Shen G-L, Yu R-Q (1999) DNA binding studies of a solvatochromic fluorescence probe 3-methoxybenzanthrone. Spectrochim Acta A 55:2719–2727

    Article  Google Scholar 

  3. Kirilova E, Kalnina I (2010) 3-isopropyloxy-6-morpholino-2-phenylphenalen-1-one as lipophilic fluorescent probe for lymphocyte investigations. Appl Biochem Biotechnol 160:1744–1751

    Article  CAS  PubMed  Google Scholar 

  4. Kalnina I, Klimkane L, Kirilova E, Toma M, Kizane G, Meirovics I (2007) Fluorescent probe ABM for screening gastrointestinal patient’s immune state. J Fluoresc 17:619–625

    Article  CAS  PubMed  Google Scholar 

  5. Gorbenko G, Trusova V, Kirilova E, Kirilov G, Kalnina I, Vasilev A, Kaloyanova S, Deligeorgiev T (2010) New fluorescent probes for detection and characterization of amyloid fibrils. Chem Phys Lett 495:275–279

    Article  CAS  Google Scholar 

  6. Vus K, Trusova V, Gorbenko G, Kirilova E, Kirilov G, Kalnina I, Kinnunen P (2012) Novel aminobenzanthrone dyes for amyloid fibril detection. Chem Phys Lett 532:110–115

    Article  CAS  Google Scholar 

  7. Kirilova E, Kalnina I, Kirilov G, Meirovics I (2008) Spectroscopic study of benzanthrone 3-N-derivatives as new hydrophobic fluorescent probes for biomolecules. J Fluoresc 18:645–648

    Article  CAS  PubMed  Google Scholar 

  8. Refat M, Aqeel S, Grabtchev I (2004) Spectroscopic and physicochemical studies of charge-transfer complexes of some benzanthrone derivatives “Luminophore Dyes” with iodine as σ-acceptor. Can J Anal Sci Spectrosc 49:258–265

    CAS  Google Scholar 

  9. Grabchev I, Bojinov V, Moneva I (1998) Functional properties of azomethine substituted benzanthrone dyes for use in nematic liquid crystals. J Mol Struct 471:19–25

    Article  Google Scholar 

  10. Lakowicz J (1999) Principles of fluorescent spectroscopy, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  11. Trusova V, Kirilova E, Kalina I, Kirilov G, Zhytniakivska O, Fedorov P, Gorbenko G (2012) Novel benzanthrone aminoderivatives for membrane studies. J Fluoresc 22:953–959

    Article  CAS  PubMed  Google Scholar 

  12. Zhytniakivska O, Trusova V, Gorbenko G, Kirilova E, Kalnina I, Kirilov G, Kinnunen P (2014) Newly synthesized benzanthrone derivatives as prospective fluorescent membrane probes. J Lumin 146:307–313

    Article  CAS  Google Scholar 

  13. Fung B, Stryer L (1978) Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248

    Article  CAS  PubMed  Google Scholar 

  14. Bergelson L, Molotkovsky J, Manevich Y (1985) Lipid-specific probes in studies of biological membranes. Chem Phys Lipids 37:165–195

    Article  CAS  PubMed  Google Scholar 

  15. Molotkovsky J, Dmitriev P, Nikulina L, Bergelson L (1979) Synthesis of new fluorescent labeled phosphatidylcholines. Bioorg Khim 5:588–594

    Google Scholar 

  16. Gonta S, Utinans M, Kirilov G, Belyakov S, Ivanova I, Fleisher M, Savenkov V, Kirilova E (2013) Fluorescent substituted amidines of benzanthrone: synthesis, spectroscopy and quantum chemical calculations. Spectrochim Acta A 101:325–334

    Article  CAS  Google Scholar 

  17. Bulychev A, Verchoturov V, Gulaev B (1988) Current methods of biophysical studies. Vyschaya shkola, Moscow

    Google Scholar 

  18. Santos N, Prieto M, Castanho M (2003) Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochim Biophys Acta 1612:123–135

    Article  CAS  PubMed  Google Scholar 

  19. Ivkov V, Berestovsky G (1981) Dynamic structure of lipid bilayer. Nauka, Moscow

    Google Scholar 

  20. Gorbenko G, Kinnunen P (2013) FRET analysis of protein-lipid interactions. Springer Ser Fluoresc Fluorescent Methods Study Biol Membr 13:115–140

    Article  CAS  Google Scholar 

  21. Ardail D, Privat J, Egretcharlier M, Levrat C, Lerme F, Louitson P (1990) Mitochondrial contact sites—lipid composition and dynamics. J Biol Chem 265:18797–18802

    CAS  PubMed  Google Scholar 

  22. Flewelling R, Hubbel W (1986) The membrane dipole potential in a total membrane potential model. Application to hydrophobic ion interaction with membranes. Biophys J 49:541–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ceve G (1990) Membrane electrostatics. Biochim Biophys Acta 1031:311–382

    Article  Google Scholar 

  24. Franklin J, Cafiso D (1995) Internal electrostatic potentials in bilayers: measuring and conrolling dipole potentials in lipid vesicles. Biophys J 65:289–299

    Article  Google Scholar 

  25. Zhao G-J, Han K-l (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45:404–413

    Article  CAS  PubMed  Google Scholar 

  26. Zhao G-J, Liu J-Y, Zhou L-C, Han K-L (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new quenching mechanism. J Phys Chem B 111:8940–8945

    Article  CAS  PubMed  Google Scholar 

  27. Zhang M-X, Zhao G-J (2012) Modification of n-type organic semiconductor performance of perylene diimides by substitution in different positon: two-dimensional π-stacking and hydrogen bonding. ChemSusChem 5:879–887

    Article  CAS  PubMed  Google Scholar 

  28. Johansson L, Molotkovsky J, Bergelson L (1990) Fluorescence properties of anthrylvinyl lipid probes. Chem Phys Lipids 53:185–189

    Article  CAS  Google Scholar 

  29. Molotkovsky J, Manevich E, Gerasimova E, Molotkovskaya I, Polessky V, Bergelson L (1982) Differential study of phosphatidylcholine and sphingomyelin in human high-density lipoproteins with lipid-specific fluorescent probes. Eur J Biochem 122:573–579

    Article  CAS  PubMed  Google Scholar 

  30. Boldyrev I, Zhai X, Momsen M, Brockman H, Brown R, Molotkovsky J (2007) New BODIPY lipid probes for fluorescence studies of membranes. J Lipid Res 48:1518–1532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wiener M, White S (1992) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. Biophys J 61:437–447

    Google Scholar 

  32. Epand R, Kraaychenhof R (1999) Fluorescent probes to monitor membrane interfacial polarity. Chem Phys Lipids 101:57–64

    Article  CAS  PubMed  Google Scholar 

  33. Bagatolli L (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758:1541–1556

    Article  CAS  PubMed  Google Scholar 

  34. Chong P (1988) Effects of hydrostatic pressure on the location of Prodan in lipid bilayers and cellular membranes. Biochemistry 27:399–404

    Article  CAS  PubMed  Google Scholar 

  35. Bondar O, Rowe E (1999) Preferential interactions of fluorescent probe Prodan with cholesterol. Biophys J 76:956–962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mukherjee S, Raghuraman H, Chattopadhyay A (2007) Membrane localization and dynamics of Nile Red: effect of cholesterol. Biochim Biophys Acta 1768:58–66

    Google Scholar 

  37. Alakoskela JMI, Kinnunen PKJ (2001) Probing phospholipid main phase transition by fluorescence spectroscopy and a surface redox reaction. J Phys Chem B 105:11294–11301

    Article  CAS  Google Scholar 

  38. Klymchenko A, Duportail G, Demchenko A, Mely Y (2004) Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys J 86:2929–2941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Etienne F, Roche Y, Peretti P, Bernard S (2008) Cardiolipin packing ability studied by grazing incidence X-ray diffraction. Chem Phys Lipids 152:13–23

    Article  CAS  PubMed  Google Scholar 

  40. Nichols-Smith S, The S-Y, Kuhl T (2004) Thermodynamic and mechanical properties of model mitochondrial membranes. Biochim Biophys Acta 1663:82–88

    Article  CAS  PubMed  Google Scholar 

  41. Domenech O, Sanz F, Montero M, Hernandez-Borell J (2006) Thermodynamic and structural study of the main phospholipids components comprising the mitochondrial inner membrane. Biochim Biophys Acta 1758:213–221

    Article  CAS  PubMed  Google Scholar 

  42. Chen Q, Li Q (2001) Effect of cardiolipin on proton permeability of phospholipid liposomes: the role of hydration at the lipid-water interface. Arch Biochem Biophys 389:201–206

    Article  CAS  PubMed  Google Scholar 

  43. Shibata A, Ikawa K, Shimooka T, Terada H (1994) Significant stabilization of the phosphatidylcholine bilayer structure by incorporation of small amounts of cardiolipin. Biochim Biophys Acta 1192:71–78

    Article  CAS  PubMed  Google Scholar 

  44. Sparrman T, Westlund P (2003) An NMR line shape and relaxation analysis of heavy water powder spectra of the L-alpha, L-beta and P-beta phases in the DPPC/water system. Phys Chem Chem Phys 5:2114–2121

    Article  CAS  Google Scholar 

  45. MacDonald P, Seelig J (1987) Calcium binding to cardiolipin-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance. Biochemistry 26:6292–6298

    Article  CAS  PubMed  Google Scholar 

  46. Pinjeiro T, Andeezei A, Duralski A, Watts A (1994) Phospholipid headgroup-headgroup electrostatic interactions in mixed bilayers of cardiolipin with phosphatidylcholines studied by 2H NMR. Biochemistry 33:4896–4902

    Article  Google Scholar 

  47. MacDonald P, Seelig J (1987) Calcium binding to mixed phosphatidylglycerol-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance. Biochemistry 26:1231–1240

    Article  CAS  PubMed  Google Scholar 

  48. Scherer P, Seelig J (1987) Structure and dynamics of the phosphatidylcholine and phosphatidylcholine headgroup in L-M fibroblasts as studied by deuterium nuclear magnetic resonance. EMBO J 6:2915–2922

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Murzyn K, Rog T, Pasenkiewier-Gierula M (2005) Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys J 88:1091–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Tari A, Huang L (1989) Structure and function relationship of phosphatidylglycerol in the stabilization of the phosphatidylethanolamine bilayer. Biochemistry 28:7708–7712

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from Fundamental Research State Fund (project number F.54.4/015) and CIMO Fellowship (OZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Zhytniakivska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhytniakivska, O., Trusova, V., Gorbenko, G. et al. Location of Novel Benzanthrone Dyes in Model Membranes as Revealed by Resonance Energy Transfer. J Fluoresc 24, 899–907 (2014). https://doi.org/10.1007/s10895-014-1370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1370-7

Keywords

Navigation