Journal of Fluorescence

, Volume 24, Issue 3, pp 899–907 | Cite as

Location of Novel Benzanthrone Dyes in Model Membranes as Revealed by Resonance Energy Transfer

  • Olga Zhytniakivska
  • Valeriya Trusova
  • Galyna Gorbenko
  • Elena Kirilova
  • Inta Kalnina
  • Georgiy Kirilov
  • Julian Molotkovsky
  • Jukka Tulkki
  • Paavo Kinnunen


Förster resonance energy transfer (FRET) between anthrylvinyl-labeled phosphatidylcholine (AV-PC) as a donor and newly synthesized benzanthrones (referred to here as A8, A6, AM12, AM15 and AM18) as acceptors has been examined to gain insight into molecular level details of the interactions between benzanthrone dyes and model lipid membranes composed of zwitterionic lipid phosphatidylcholine and its mixtures with anionic lipids cardiolipin (CL) and phosphatidylglycerol (PG). FRET data were quantitatively analyzed in terms of the model of energy transfer in two-dimensional systems taking into account the distance dependence of orientation factor. Evidence for A8 location in phospholipid headgroup region has been obtained. Inclusion of CL and PG into PC bilayer has been found to induce substantial relocation of A6, AM12, AM15 and AM18 from hydrophobic membrane core to lipid-water interface.


Benzanthrone dyes Lipid membranes Resonance energy transfer 



This work was supported by the grant from Fundamental Research State Fund (project number F.54.4/015) and CIMO Fellowship (OZ).


  1. 1.
    Dobretsov G, Dmitriev V, Pirogova L, Petrov V, Vladimirov Y (1978) 4-Dimethylaminochalcone and 3-methoxybenzanthrone as fluorescent probes to study biomembranes. III Relationship between state of hydration shell of membrane and state of phospholipids. Stud Biophys 71:189–196Google Scholar
  2. 2.
    Yang X, Liu W-H, Jin W-J, Shen G-L, Yu R-Q (1999) DNA binding studies of a solvatochromic fluorescence probe 3-methoxybenzanthrone. Spectrochim Acta A 55:2719–2727CrossRefGoogle Scholar
  3. 3.
    Kirilova E, Kalnina I (2010) 3-isopropyloxy-6-morpholino-2-phenylphenalen-1-one as lipophilic fluorescent probe for lymphocyte investigations. Appl Biochem Biotechnol 160:1744–1751PubMedCrossRefGoogle Scholar
  4. 4.
    Kalnina I, Klimkane L, Kirilova E, Toma M, Kizane G, Meirovics I (2007) Fluorescent probe ABM for screening gastrointestinal patient’s immune state. J Fluoresc 17:619–625PubMedCrossRefGoogle Scholar
  5. 5.
    Gorbenko G, Trusova V, Kirilova E, Kirilov G, Kalnina I, Vasilev A, Kaloyanova S, Deligeorgiev T (2010) New fluorescent probes for detection and characterization of amyloid fibrils. Chem Phys Lett 495:275–279CrossRefGoogle Scholar
  6. 6.
    Vus K, Trusova V, Gorbenko G, Kirilova E, Kirilov G, Kalnina I, Kinnunen P (2012) Novel aminobenzanthrone dyes for amyloid fibril detection. Chem Phys Lett 532:110–115CrossRefGoogle Scholar
  7. 7.
    Kirilova E, Kalnina I, Kirilov G, Meirovics I (2008) Spectroscopic study of benzanthrone 3-N-derivatives as new hydrophobic fluorescent probes for biomolecules. J Fluoresc 18:645–648PubMedCrossRefGoogle Scholar
  8. 8.
    Refat M, Aqeel S, Grabtchev I (2004) Spectroscopic and physicochemical studies of charge-transfer complexes of some benzanthrone derivatives “Luminophore Dyes” with iodine as σ-acceptor. Can J Anal Sci Spectrosc 49:258–265Google Scholar
  9. 9.
    Grabchev I, Bojinov V, Moneva I (1998) Functional properties of azomethine substituted benzanthrone dyes for use in nematic liquid crystals. J Mol Struct 471:19–25CrossRefGoogle Scholar
  10. 10.
    Lakowicz J (1999) Principles of fluorescent spectroscopy, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  11. 11.
    Trusova V, Kirilova E, Kalina I, Kirilov G, Zhytniakivska O, Fedorov P, Gorbenko G (2012) Novel benzanthrone aminoderivatives for membrane studies. J Fluoresc 22:953–959PubMedCrossRefGoogle Scholar
  12. 12.
    Zhytniakivska O, Trusova V, Gorbenko G, Kirilova E, Kalnina I, Kirilov G, Kinnunen P (2014) Newly synthesized benzanthrone derivatives as prospective fluorescent membrane probes. J Lumin 146:307–313CrossRefGoogle Scholar
  13. 13.
    Fung B, Stryer L (1978) Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248PubMedCrossRefGoogle Scholar
  14. 14.
    Bergelson L, Molotkovsky J, Manevich Y (1985) Lipid-specific probes in studies of biological membranes. Chem Phys Lipids 37:165–195PubMedCrossRefGoogle Scholar
  15. 15.
    Molotkovsky J, Dmitriev P, Nikulina L, Bergelson L (1979) Synthesis of new fluorescent labeled phosphatidylcholines. Bioorg Khim 5:588–594Google Scholar
  16. 16.
    Gonta S, Utinans M, Kirilov G, Belyakov S, Ivanova I, Fleisher M, Savenkov V, Kirilova E (2013) Fluorescent substituted amidines of benzanthrone: synthesis, spectroscopy and quantum chemical calculations. Spectrochim Acta A 101:325–334CrossRefGoogle Scholar
  17. 17.
    Bulychev A, Verchoturov V, Gulaev B (1988) Current methods of biophysical studies. Vyschaya shkola, MoscowGoogle Scholar
  18. 18.
    Santos N, Prieto M, Castanho M (2003) Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochim Biophys Acta 1612:123–135PubMedCrossRefGoogle Scholar
  19. 19.
    Ivkov V, Berestovsky G (1981) Dynamic structure of lipid bilayer. Nauka, MoscowGoogle Scholar
  20. 20.
    Gorbenko G, Kinnunen P (2013) FRET analysis of protein-lipid interactions. Springer Ser Fluoresc Fluorescent Methods Study Biol Membr 13:115–140CrossRefGoogle Scholar
  21. 21.
    Ardail D, Privat J, Egretcharlier M, Levrat C, Lerme F, Louitson P (1990) Mitochondrial contact sites—lipid composition and dynamics. J Biol Chem 265:18797–18802PubMedGoogle Scholar
  22. 22.
    Flewelling R, Hubbel W (1986) The membrane dipole potential in a total membrane potential model. Application to hydrophobic ion interaction with membranes. Biophys J 49:541–552PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ceve G (1990) Membrane electrostatics. Biochim Biophys Acta 1031:311–382CrossRefGoogle Scholar
  24. 24.
    Franklin J, Cafiso D (1995) Internal electrostatic potentials in bilayers: measuring and conrolling dipole potentials in lipid vesicles. Biophys J 65:289–299CrossRefGoogle Scholar
  25. 25.
    Zhao G-J, Han K-l (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45:404–413PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao G-J, Liu J-Y, Zhou L-C, Han K-L (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new quenching mechanism. J Phys Chem B 111:8940–8945PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang M-X, Zhao G-J (2012) Modification of n-type organic semiconductor performance of perylene diimides by substitution in different positon: two-dimensional π-stacking and hydrogen bonding. ChemSusChem 5:879–887PubMedCrossRefGoogle Scholar
  28. 28.
    Johansson L, Molotkovsky J, Bergelson L (1990) Fluorescence properties of anthrylvinyl lipid probes. Chem Phys Lipids 53:185–189CrossRefGoogle Scholar
  29. 29.
    Molotkovsky J, Manevich E, Gerasimova E, Molotkovskaya I, Polessky V, Bergelson L (1982) Differential study of phosphatidylcholine and sphingomyelin in human high-density lipoproteins with lipid-specific fluorescent probes. Eur J Biochem 122:573–579PubMedCrossRefGoogle Scholar
  30. 30.
    Boldyrev I, Zhai X, Momsen M, Brockman H, Brown R, Molotkovsky J (2007) New BODIPY lipid probes for fluorescence studies of membranes. J Lipid Res 48:1518–1532PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Wiener M, White S (1992) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. Biophys J 61:437–447Google Scholar
  32. 32.
    Epand R, Kraaychenhof R (1999) Fluorescent probes to monitor membrane interfacial polarity. Chem Phys Lipids 101:57–64PubMedCrossRefGoogle Scholar
  33. 33.
    Bagatolli L (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758:1541–1556PubMedCrossRefGoogle Scholar
  34. 34.
    Chong P (1988) Effects of hydrostatic pressure on the location of Prodan in lipid bilayers and cellular membranes. Biochemistry 27:399–404PubMedCrossRefGoogle Scholar
  35. 35.
    Bondar O, Rowe E (1999) Preferential interactions of fluorescent probe Prodan with cholesterol. Biophys J 76:956–962PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Mukherjee S, Raghuraman H, Chattopadhyay A (2007) Membrane localization and dynamics of Nile Red: effect of cholesterol. Biochim Biophys Acta 1768:58–66Google Scholar
  37. 37.
    Alakoskela JMI, Kinnunen PKJ (2001) Probing phospholipid main phase transition by fluorescence spectroscopy and a surface redox reaction. J Phys Chem B 105:11294–11301CrossRefGoogle Scholar
  38. 38.
    Klymchenko A, Duportail G, Demchenko A, Mely Y (2004) Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys J 86:2929–2941PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Etienne F, Roche Y, Peretti P, Bernard S (2008) Cardiolipin packing ability studied by grazing incidence X-ray diffraction. Chem Phys Lipids 152:13–23PubMedCrossRefGoogle Scholar
  40. 40.
    Nichols-Smith S, The S-Y, Kuhl T (2004) Thermodynamic and mechanical properties of model mitochondrial membranes. Biochim Biophys Acta 1663:82–88PubMedCrossRefGoogle Scholar
  41. 41.
    Domenech O, Sanz F, Montero M, Hernandez-Borell J (2006) Thermodynamic and structural study of the main phospholipids components comprising the mitochondrial inner membrane. Biochim Biophys Acta 1758:213–221PubMedCrossRefGoogle Scholar
  42. 42.
    Chen Q, Li Q (2001) Effect of cardiolipin on proton permeability of phospholipid liposomes: the role of hydration at the lipid-water interface. Arch Biochem Biophys 389:201–206PubMedCrossRefGoogle Scholar
  43. 43.
    Shibata A, Ikawa K, Shimooka T, Terada H (1994) Significant stabilization of the phosphatidylcholine bilayer structure by incorporation of small amounts of cardiolipin. Biochim Biophys Acta 1192:71–78PubMedCrossRefGoogle Scholar
  44. 44.
    Sparrman T, Westlund P (2003) An NMR line shape and relaxation analysis of heavy water powder spectra of the L-alpha, L-beta and P-beta phases in the DPPC/water system. Phys Chem Chem Phys 5:2114–2121CrossRefGoogle Scholar
  45. 45.
    MacDonald P, Seelig J (1987) Calcium binding to cardiolipin-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance. Biochemistry 26:6292–6298PubMedCrossRefGoogle Scholar
  46. 46.
    Pinjeiro T, Andeezei A, Duralski A, Watts A (1994) Phospholipid headgroup-headgroup electrostatic interactions in mixed bilayers of cardiolipin with phosphatidylcholines studied by 2H NMR. Biochemistry 33:4896–4902CrossRefGoogle Scholar
  47. 47.
    MacDonald P, Seelig J (1987) Calcium binding to mixed phosphatidylglycerol-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance. Biochemistry 26:1231–1240PubMedCrossRefGoogle Scholar
  48. 48.
    Scherer P, Seelig J (1987) Structure and dynamics of the phosphatidylcholine and phosphatidylcholine headgroup in L-M fibroblasts as studied by deuterium nuclear magnetic resonance. EMBO J 6:2915–2922PubMedCentralPubMedGoogle Scholar
  49. 49.
    Murzyn K, Rog T, Pasenkiewier-Gierula M (2005) Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys J 88:1091–1103PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Tari A, Huang L (1989) Structure and function relationship of phosphatidylglycerol in the stabilization of the phosphatidylethanolamine bilayer. Biochemistry 28:7708–7712PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Olga Zhytniakivska
    • 1
    • 5
  • Valeriya Trusova
    • 1
  • Galyna Gorbenko
    • 1
  • Elena Kirilova
    • 2
  • Inta Kalnina
    • 2
  • Georgiy Kirilov
    • 2
  • Julian Molotkovsky
    • 3
  • Jukka Tulkki
    • 4
  • Paavo Kinnunen
    • 4
  1. 1.Department of Nuclear and Medical PhysicsV.N. Karazin Kharkiv National UniversityKharkivUkraine
  2. 2.Department of Chemistry and Geography, Faculty of Natural Science and MathematicsDaugavpils UniversityDaugavpilsLatvia
  3. 3.Institute of Bioorganic ChemistryRussian Academy of ScienceMoscowRussia
  4. 4.Department of Biomedical Engineering and Computational Science, School of Science and TechnologyAalto UniversityEspooFinland
  5. 5.KharkivUkraine

Personalised recommendations