Journal of Fluorescence

, Volume 24, Issue 3, pp 841–846 | Cite as

BODIPY Fluorescent Chemosensor for Cu2+ Detection and Its Applications in Living Cells: Fast Response and High Sensitivity

  • Li Quan
  • Tingting Sun
  • Wenhai Lin
  • Xingang Guan
  • Min Zheng
  • Zhigang Xie
  • Xiabin Jing


Copper is an essential trace element for the proper functioning of organ and metabolic process in humans. However, both its excess and deficiency in the body can result in adverse health effects. A BODIPY containing 2,2′-bipyridyl group was synthesized and used as a fluorescent chemodosimeter for selective Cu2+ detection in mild condition. This BODIPY shows fast response (~1 min) and high sensitivity for Cu2+ in aqueous solution due to the photoinduced electron transfer from the excited state of fluorophore to the bipyridyl unit complexed to Cu2+. The fluorescence quenching mechanism revealed by MALDI-TOF Mass spectra showed one Cu2+ could coordinate with two BODIPY molecules, and this coordination is reversible. This simple BODIPY dyes also could be used for sensing the Cu2+ in living cell. This work contributes to extend the potential applications of BODIPY to the biological and environmental areas.


BODIPY Fluorescent chemosensor Cu2+ detection 



Financial support was provided by the National Natural Science Foundation of China (Project No. 91227118) and China Postdoctoral Science Foundation (No. 2013M540260).

Supplementary material

10895_2014_1360_MOESM1_ESM.docx (996 kb)
ESM 1 (DOCX 996 kb)


  1. 1.
    Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811SPubMedGoogle Scholar
  2. 2.
    Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B Crit Rev 4:341–394PubMedCrossRefGoogle Scholar
  3. 3.
    Suresh M, Ghosh A, Das A (2008) A simple chemosensor for Hg2+ and Cu2+ that works asa molecular keypad lock. Chem Commun 23(33):3906–3908CrossRefGoogle Scholar
  4. 4.
    Royzen M, Dai Z, Canary JW (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. J Am Chem Soc 127:1612–1613PubMedCrossRefGoogle Scholar
  5. 5.
    Wang S, Men G, Zhao L, Hou Q, Jiang S (2010) Sensors Actuators A 145:826–831CrossRefGoogle Scholar
  6. 6.
    Jiang J, Jiang H, Tang X, Yang L, Dou W, Liu W, Fang R, Liu W (2011) Dalton Trans 40:6367–6370PubMedCrossRefGoogle Scholar
  7. 7.
    Yang Y, Huo F, Yin C, Chu Y, Chao J, Zhang Y, Zhang J, Li S, Lv H, Zheng A, Liu D (2013) Sensors Actuators B 177:1189–1197CrossRefGoogle Scholar
  8. 8.
    Wu QY, Anslyn EV (2004) Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing of Cu(II). J Am Chem Soc 126:14682–14683PubMedCrossRefGoogle Scholar
  9. 9.
    Xu Z, Qian X, Cui J (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. Org Lett 7:3029–3032PubMedCrossRefGoogle Scholar
  10. 10.
    Weng YQ, Yue F, Zhong YR, Ye BH (2007) Inorg Chem 46:7749–7755PubMedCrossRefGoogle Scholar
  11. 11.
    Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Shao N, Zhang Y, Cheung S, Yang R, Chan W, Mo T, Li K, Liu F (2005) Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem 77:7294–7303PubMedCrossRefGoogle Scholar
  13. 13.
    Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc Natl Acad Sci U S A 102:11179–11184PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kramer R (1998) Fluoreszenz-Chemosensoren for Cu2+-Ionen: schnell, selektiv und hochempfindlich. Angew Chem 110:804–806CrossRefGoogle Scholar
  15. 15.
    Zhang X, Shiraishi Y, Hirai T (2007) Cu(II)-selective green fluorescence of a rhodamine—diacetic acid conjugate. Org Lett 9:5039–5042PubMedCrossRefGoogle Scholar
  16. 16.
    Xu ZC, Xiao Y, Qian XH, Cui JN, Cui DW (2005) Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org Lett 7:889–892PubMedCrossRefGoogle Scholar
  17. 17.
    Kim MH, Jang HH, Yi S, Chang SK, Han MS (2009) Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ ions. Chem Commun 4838–4840Google Scholar
  18. 18.
    Li N, Xiang Y, Tong A (2010) Highly sensitive and selective “turn-on” fluorescent chemodosimeter for Cu2+ in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin. Chem Commun 46:3363–3365CrossRefGoogle Scholar
  19. 19.
    Wen ZC, Yang R, He H, Jiang YB (2006) A highly selective charge transfer fluoroionophore for Cu2+. Chem Commun 106–108Google Scholar
  20. 20.
    Lee MH, Kim HJ, Yoon S, Park N, Kim JS (2008) Metal ion induced FRET OFF-ON in trendansyl-appended rhodamine. Org Lett 10:213–216PubMedCrossRefGoogle Scholar
  21. 21.
    Xiang Y, Tong A, Jin P, Ju Y (2006) New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org Lett 8:2863–2866PubMedCrossRefGoogle Scholar
  22. 22.
    Xiang Y, Li Z, Chen X, Tong A (2008) Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta 74:1148–1153PubMedCrossRefGoogle Scholar
  23. 23.
    Shiraishi Y, Tanaka K, Hirai T (2013) Colorimetric sensing of Cu(II) in aqueous media with a spiropyran derivative via a oxidative dehydrogenation mechanism. ACS Appl Mater Interfaces 5:3456–3465PubMedCrossRefGoogle Scholar
  24. 24.
    Yu MM, Li ZX, Wei LH, Wei DH, Tang MS (2008) A 1,8-naphthyridine-based fluorescent chemodosimeter for the rapid detection of Zn2+ and Cu2+. Org Lett 22:5115–5118CrossRefGoogle Scholar
  25. 25.
    Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan SH, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012PubMedCrossRefGoogle Scholar
  26. 26.
    Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:4328–4359CrossRefGoogle Scholar
  27. 27.
    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566PubMedCrossRefGoogle Scholar
  28. 28.
    Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40CrossRefGoogle Scholar
  29. 29.
    Fabbrizzi L, Poggi A (1995) Sensors and switches from supramolecular chemistry. Chem Soc Rev 24:197–202CrossRefGoogle Scholar
  30. 30.
    Valeur B (2002) Molecular fluorescence. Principles and applications. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Baruah M, Qin W, Vallee RAL, Beljonne D, Rohand T, Dehaen W, Boens N (2005) A highly potassium-selective ratiometric fluorescent indicator based on MBDP azacrown ether excitable with visible light. Org Lett 7:4377–4380PubMedCrossRefGoogle Scholar
  32. 32.
    Wang D, Shiraishi Y, Hirai T (2010) A distyryl MBDP derivative as a fluorescent probe for selective detection of chromium(III). Tetrahedron Lett 51:2545–2549CrossRefGoogle Scholar
  33. 33.
    Coskun A, Deniz E, Akkaya EU (2007) A sensitive fluorescent chemosensor for anions based on a styryl-boradiazaindacene framework. Tetrahedron Lett 48:5359–5361CrossRefGoogle Scholar
  34. 34.
    Werner T, Huber C, Heinl S, Kollmannsberger M, Daub J, Wolfbeis OS (1997) Novel optical pH-sensor based on a boradiaza-indacene derivative. Fresenius J Anal Chem 359:150–154CrossRefGoogle Scholar
  35. 35.
    Kollmannsberger M, Gareis T, Heinl S, Breu J, Daub J (1997) Electrogenerated chemiluminescence and proton-dependent switching of fluorescence: functionalized difluoroboradiaza-s-indacenes. Angew Chem Int Ed Engl 36:1333–1335CrossRefGoogle Scholar
  36. 36.
    Kim HJ, Kim JS (2006) BODIPY appended cone-calix[4]arene: selective fluorescence changes upon Ca2+ binding. Tetrahedron Lett 47:7051–7055CrossRefGoogle Scholar
  37. 37.
    Sibrian-Vazquez M, Escobedo JO, Lowry M, Fronczek FR, Strongin RM (2012) Field effects induce bathochromic shifts in xanthene dyes. J Am Chem Soc 134:10502–10508PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Zhu LN, Yang CL, Qin JG (2008) An aggregation-induced blue shift of emission and the self-assembly of nanoparticles from a novel amphiphilic oligofluorene. Chem Commun 6303–6305Google Scholar
  39. 39.
    Bodell WJ, Ye Q, Pathak DN, Pongracz K (1998) Oxidation of eugenol to form DNA adducts and 8-hydroxy-29-deoxyguanosine: role of quinone methide derivative in DNA adduct formation. Carcinogenesis 19:437–443PubMedCrossRefGoogle Scholar
  40. 40.
    Stites TE, Mitchell AE, Rucker RB (2000) Physiological importance of quinoenzymes and the O-Quinone family of cofactors. J Nutr 130:719–727PubMedGoogle Scholar
  41. 41.
    Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations