Skip to main content
Log in

BODIPY Fluorescent Chemosensor for Cu2+ Detection and Its Applications in Living Cells: Fast Response and High Sensitivity

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Copper is an essential trace element for the proper functioning of organ and metabolic process in humans. However, both its excess and deficiency in the body can result in adverse health effects. A BODIPY containing 2,2′-bipyridyl group was synthesized and used as a fluorescent chemodosimeter for selective Cu2+ detection in mild condition. This BODIPY shows fast response (~1 min) and high sensitivity for Cu2+ in aqueous solution due to the photoinduced electron transfer from the excited state of fluorophore to the bipyridyl unit complexed to Cu2+. The fluorescence quenching mechanism revealed by MALDI-TOF Mass spectra showed one Cu2+ could coordinate with two BODIPY molecules, and this coordination is reversible. This simple BODIPY dyes also could be used for sensing the Cu2+ in living cell. This work contributes to extend the potential applications of BODIPY to the biological and environmental areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811S

    CAS  PubMed  Google Scholar 

  2. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B Crit Rev 4:341–394

    Article  CAS  PubMed  Google Scholar 

  3. Suresh M, Ghosh A, Das A (2008) A simple chemosensor for Hg2+ and Cu2+ that works asa molecular keypad lock. Chem Commun 23(33):3906–3908

    Article  Google Scholar 

  4. Royzen M, Dai Z, Canary JW (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. J Am Chem Soc 127:1612–1613

    Article  CAS  PubMed  Google Scholar 

  5. Wang S, Men G, Zhao L, Hou Q, Jiang S (2010) Sensors Actuators A 145:826–831

    Article  CAS  Google Scholar 

  6. Jiang J, Jiang H, Tang X, Yang L, Dou W, Liu W, Fang R, Liu W (2011) Dalton Trans 40:6367–6370

    Article  CAS  PubMed  Google Scholar 

  7. Yang Y, Huo F, Yin C, Chu Y, Chao J, Zhang Y, Zhang J, Li S, Lv H, Zheng A, Liu D (2013) Sensors Actuators B 177:1189–1197

    Article  CAS  Google Scholar 

  8. Wu QY, Anslyn EV (2004) Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing of Cu(II). J Am Chem Soc 126:14682–14683

    Article  CAS  PubMed  Google Scholar 

  9. Xu Z, Qian X, Cui J (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. Org Lett 7:3029–3032

    Article  CAS  PubMed  Google Scholar 

  10. Weng YQ, Yue F, Zhong YR, Ye BH (2007) Inorg Chem 46:7749–7755

    Article  CAS  PubMed  Google Scholar 

  11. Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shao N, Zhang Y, Cheung S, Yang R, Chan W, Mo T, Li K, Liu F (2005) Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem 77:7294–7303

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc Natl Acad Sci U S A 102:11179–11184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kramer R (1998) Fluoreszenz-Chemosensoren for Cu2+-Ionen: schnell, selektiv und hochempfindlich. Angew Chem 110:804–806

    Article  Google Scholar 

  15. Zhang X, Shiraishi Y, Hirai T (2007) Cu(II)-selective green fluorescence of a rhodamine—diacetic acid conjugate. Org Lett 9:5039–5042

    Article  CAS  PubMed  Google Scholar 

  16. Xu ZC, Xiao Y, Qian XH, Cui JN, Cui DW (2005) Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org Lett 7:889–892

    Article  CAS  PubMed  Google Scholar 

  17. Kim MH, Jang HH, Yi S, Chang SK, Han MS (2009) Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ ions. Chem Commun 4838–4840

  18. Li N, Xiang Y, Tong A (2010) Highly sensitive and selective “turn-on” fluorescent chemodosimeter for Cu2+ in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin. Chem Commun 46:3363–3365

    Article  CAS  Google Scholar 

  19. Wen ZC, Yang R, He H, Jiang YB (2006) A highly selective charge transfer fluoroionophore for Cu2+. Chem Commun 106–108

  20. Lee MH, Kim HJ, Yoon S, Park N, Kim JS (2008) Metal ion induced FRET OFF-ON in trendansyl-appended rhodamine. Org Lett 10:213–216

    Article  CAS  PubMed  Google Scholar 

  21. Xiang Y, Tong A, Jin P, Ju Y (2006) New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org Lett 8:2863–2866

    Article  CAS  PubMed  Google Scholar 

  22. Xiang Y, Li Z, Chen X, Tong A (2008) Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta 74:1148–1153

    Article  CAS  PubMed  Google Scholar 

  23. Shiraishi Y, Tanaka K, Hirai T (2013) Colorimetric sensing of Cu(II) in aqueous media with a spiropyran derivative via a oxidative dehydrogenation mechanism. ACS Appl Mater Interfaces 5:3456–3465

    Article  CAS  PubMed  Google Scholar 

  24. Yu MM, Li ZX, Wei LH, Wei DH, Tang MS (2008) A 1,8-naphthyridine-based fluorescent chemodosimeter for the rapid detection of Zn2+ and Cu2+. Org Lett 22:5115–5118

    Article  Google Scholar 

  25. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan SH, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012

    Article  CAS  PubMed  Google Scholar 

  26. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:4328–4359

    Article  CAS  Google Scholar 

  27. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  28. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  29. Fabbrizzi L, Poggi A (1995) Sensors and switches from supramolecular chemistry. Chem Soc Rev 24:197–202

    Article  CAS  Google Scholar 

  30. Valeur B (2002) Molecular fluorescence. Principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  31. Baruah M, Qin W, Vallee RAL, Beljonne D, Rohand T, Dehaen W, Boens N (2005) A highly potassium-selective ratiometric fluorescent indicator based on MBDP azacrown ether excitable with visible light. Org Lett 7:4377–4380

    Article  CAS  PubMed  Google Scholar 

  32. Wang D, Shiraishi Y, Hirai T (2010) A distyryl MBDP derivative as a fluorescent probe for selective detection of chromium(III). Tetrahedron Lett 51:2545–2549

    Article  CAS  Google Scholar 

  33. Coskun A, Deniz E, Akkaya EU (2007) A sensitive fluorescent chemosensor for anions based on a styryl-boradiazaindacene framework. Tetrahedron Lett 48:5359–5361

    Article  CAS  Google Scholar 

  34. Werner T, Huber C, Heinl S, Kollmannsberger M, Daub J, Wolfbeis OS (1997) Novel optical pH-sensor based on a boradiaza-indacene derivative. Fresenius J Anal Chem 359:150–154

    Article  CAS  Google Scholar 

  35. Kollmannsberger M, Gareis T, Heinl S, Breu J, Daub J (1997) Electrogenerated chemiluminescence and proton-dependent switching of fluorescence: functionalized difluoroboradiaza-s-indacenes. Angew Chem Int Ed Engl 36:1333–1335

    Article  CAS  Google Scholar 

  36. Kim HJ, Kim JS (2006) BODIPY appended cone-calix[4]arene: selective fluorescence changes upon Ca2+ binding. Tetrahedron Lett 47:7051–7055

    Article  CAS  Google Scholar 

  37. Sibrian-Vazquez M, Escobedo JO, Lowry M, Fronczek FR, Strongin RM (2012) Field effects induce bathochromic shifts in xanthene dyes. J Am Chem Soc 134:10502–10508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhu LN, Yang CL, Qin JG (2008) An aggregation-induced blue shift of emission and the self-assembly of nanoparticles from a novel amphiphilic oligofluorene. Chem Commun 6303–6305

  39. Bodell WJ, Ye Q, Pathak DN, Pongracz K (1998) Oxidation of eugenol to form DNA adducts and 8-hydroxy-29-deoxyguanosine: role of quinone methide derivative in DNA adduct formation. Carcinogenesis 19:437–443

    Article  CAS  PubMed  Google Scholar 

  40. Stites TE, Mitchell AE, Rucker RB (2000) Physiological importance of quinoenzymes and the O-Quinone family of cofactors. J Nutr 130:719–727

    CAS  PubMed  Google Scholar 

  41. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (Project No. 91227118) and China Postdoctoral Science Foundation (No. 2013M540260).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zheng or Zhigang Xie.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 996 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, L., Sun, T., Lin, W. et al. BODIPY Fluorescent Chemosensor for Cu2+ Detection and Its Applications in Living Cells: Fast Response and High Sensitivity. J Fluoresc 24, 841–846 (2014). https://doi.org/10.1007/s10895-014-1360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1360-9

Keywords

Navigation