Journal of Fluorescence

, Volume 24, Issue 2, pp 319–327 | Cite as

Off-on Fluorescent Sensor from On-off Sensor: Exploiting Silver Nanoparticles Influence on the Organic Fluorophore Fluorescence

  • P. S. Hariharan
  • Arvind Sivasubramanian
  • Savarimuthu Philip Anthony


Turn-off fluorescence of organic fluorophore, 2-{[4-(2H-Naphtho[1,2-d][1,2,3]triazol-2-yl)-phenyl]carboxylic acid (NTPC), with metal ions (Fe3+, Cu2+, Pb2+) was converted into turn-on fluorescent sensor for biologically important Zn2+, Cu2+ and Fe3+ metal ions in aqueous solution at ppb level by exploiting strong fluorescence quenching phenomena of metal nanoparticles when organic fluorophores assembled in the vicinity of metallic surface. Amino acid attached phenolic ligands (L) were used as reducing as well as functional capping agents in the synthesis of silver nanoparticles (AgNPs). The hydrogen bonding functionality of L facilitated the assembling of NTPC in the vicinity of metallic surfaces that leads to complete quenching of NTPC fluorescence. The strong and selective coordination of L with metal ions (Zn2+, Cu2+ and Fe3+) separates the NTPC from the AgNPs surface that turn-on the NTPC fluorescence. HR-TEM and absorption studies confirm the metal coordination with L and separation of NTPC from the AgNPs surface. Mn2+ showed selective red shifting of NTPC fluorescence after 12 h with all sample. Effects of different amino acid attached phenolic ligands were explored in the metal ion sensitivity and selectivity. This approach demonstrates the multifunctional utility of metal NPs in the development of turn-on fluorescence sensor for paramagnetic heavy metal ions in aqueous solution.


Heavy metal ions sensor Turn-on fluorescent sensor fabrication Nanoparticles-organic fluorophore hybrid sensor Supramolecular chemistry 



Financial supports from Department of Science and Technology, New Delhi, India (DST Fast Track Scheme No. SR/FT/CS-03/2011 (G), SR/FT/CS-10/2011 and SR/FST/ETI-284/2011(c)) are acknowledged with gratitude.


  1. 1.
    Valeur B, Leray I (2000) Coord Chem Rev 205:3–40CrossRefGoogle Scholar
  2. 2.
    Pawley JB (1995) Handbook of biological confocal microscopy. Plenum, New YorkCrossRefGoogle Scholar
  3. 3.
    Lichtman JW, Conchello J-A (2005) Nat Methods 2:910–919PubMedCrossRefGoogle Scholar
  4. 4.
    De Silva AP, Gunaratne HQN, Gunnlaugsson TA, Huxley JM, McCoy CP, Rademacher JT, Rice TE (1997) Chem Rev 97:1515–1566PubMedCrossRefGoogle Scholar
  5. 5.
    Ueno T, Nagano TO (2011) Nat Methods 8:642–645PubMedCrossRefGoogle Scholar
  6. 6.
    Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Chem Rev 106:1995–2044PubMedCrossRefGoogle Scholar
  7. 7.
    Berg JM, Shi Y (1996) Science 271:1081–1085PubMedCrossRefGoogle Scholar
  8. 8.
    Bush AI (2000) Curr Opin Chem Biol 4:184–191PubMedCrossRefGoogle Scholar
  9. 9.
    Meneghini R (1997) Free Radical Biol Med 23:783–792CrossRefGoogle Scholar
  10. 10.
    Andrews NCN (1999) Engl J Med 341:1986–1995CrossRefGoogle Scholar
  11. 11.
    Touati D (2000) Arch Biochem Biophys 373:1–6PubMedCrossRefGoogle Scholar
  12. 12.
    Kim JS, Quang DT (2007) Chem Rev 107:3780–3799PubMedCrossRefGoogle Scholar
  13. 13.
    Aragay G, Pons J, Merkoci A (2011) Chem Rev 111:3433–3458PubMedCrossRefGoogle Scholar
  14. 14.
    Chen X, Nam S-W, Jou MJ, Kim Y, Kim S-J, Park S, Yoon J (2008) Org Lett 10:5235–5238PubMedCrossRefGoogle Scholar
  15. 15.
    Nolan EM, Jaworski J, Okamoto K-I, Hayashi Y, Sheng M, Lippard SJ (2005) J Am Chem Soc 127:16812–16823PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Jung HS, Kwon PS, Lee JW, Kim J, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS (2009) J Am Chem Soc 131:2008–2012PubMedCrossRefGoogle Scholar
  17. 17.
    Anthony SP (2012) Chem Asian J 7:374–379PubMedCrossRefGoogle Scholar
  18. 18.
    Royzen M, Dai Z, Canary JW (2005) J Am Chem Soc 127:1612–1613PubMedCrossRefGoogle Scholar
  19. 19.
    Hu ZQ, Lin CS, Wang XM, Ding L, Cui CL, Liu SF, Lu HY (2010) Chem Commun 46:3765–3767CrossRefGoogle Scholar
  20. 20.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Am Chem Soc 123:1471–1482CrossRefGoogle Scholar
  21. 21.
    Zhang XB, Kong RM, Lu Y (2011) Ann Rev Anal Chem 4:105–128CrossRefGoogle Scholar
  22. 22.
    Xu X, Daniel WL, Wei W, Mirkin CA (2010) Small 6:623–626PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Han CP, Zhang L, Li HB (2009) Chem Commun 3545–3547Google Scholar
  24. 24.
    Li HB, Cui ZM, Han CP (2009) Sens Actuators B: Chem 143:87–92CrossRefGoogle Scholar
  25. 25.
    Roy B, Bairi P, Nandi AK (2011) Analyst 136:3605–3607PubMedCrossRefGoogle Scholar
  26. 26.
    Ravi SS, Christena LR, SaiSubramanian N, Anthony SP (2013) Analyst 138:4370–4377PubMedCrossRefGoogle Scholar
  27. 27.
    Karthiga D, Anthony SP (2013) RSC Adv 3:16765–16774CrossRefGoogle Scholar
  28. 28.
    Avouris P, Persson BNJ (1984) J Phys Chem 88:837–848CrossRefGoogle Scholar
  29. 29.
    Cnossen G, Drabe KE, Wiersma DA (1993) J Chem Phys 98:5276–5280CrossRefGoogle Scholar
  30. 30.
    Lakowicz JR (2001) Anal Biochem 298:1–24PubMedCrossRefGoogle Scholar
  31. 31.
    Aslan K, Víctor H, Luna P (2004) J Flu 4:401–405CrossRefGoogle Scholar
  32. 32.
    Sokolov K, Chumanov G, Cotton TM (1998) Anal Chem 70:3898–3905PubMedCrossRefGoogle Scholar
  33. 33.
    Liebermann T, Knoll W (2000) Colloids Surf A 171:115–130CrossRefGoogle Scholar
  34. 34.
    Gryczynski I, Malicka J, Shen Y, Gryczynski Z, Lakowicz JR (2002) J Phys Chem B 106:2191–2195CrossRefGoogle Scholar
  35. 35.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Nat Mater 7:442–453PubMedCrossRefGoogle Scholar
  36. 36.
    Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) ACS Nano 3:744–752PubMedCrossRefGoogle Scholar
  37. 37.
    Chan YH, Chen JX, Wark SE, Skiles SL, Son DH, Batteas JD (2009) ACS Nano 3:1735–1744PubMedCrossRefGoogle Scholar
  38. 38.
    Phadke RC, Rangnekar DW (1986) J Chem Tech Biotech 36:230–235CrossRefGoogle Scholar
  39. 39.
    Rangnekar DW, Tagdiwala PV (1986) Dyes Pigments 7:289–298CrossRefGoogle Scholar
  40. 40.
    Esteves AP, Rodrigues LM, Silva ME, Oliveira-Campos AMF, Machalicky O, Mendonça A (2005) Tetrahedron 61:25–32CrossRefGoogle Scholar
  41. 41.
    Birks JB (1977) Fluorescence quantum yield measurements. National Bureau of Standards, Washington, Special Publication No. 466Google Scholar
  42. 42.
    Lund RB, Bass LW, (1984) Ciba-Geigy A.-G., Switz., Ger. Offen. DE3334490.Google Scholar
  43. 43.
    Dobás J, Pirkl J (1960) Coll Czechoslovak Chem Commun 25:912–918CrossRefGoogle Scholar
  44. 44.
    Jacob JA, Mahal HS, Biswas N, Mukherjee T, Kapoor S (2008) Langmuir 24:528–533PubMedCrossRefGoogle Scholar
  45. 45.
    Ranford JD, Vittal JJ, Wu D (1998) Angew Chem Int Ed 37:114–1116CrossRefGoogle Scholar
  46. 46.
    Ranford JD, Vittal JJ, Wu D, Yang X (1999) Angew Chem Int Ed 38:3498–3501CrossRefGoogle Scholar
  47. 47.
    Yang X, Ranford JD, Vittal JJ (2004) Cryst Growth Des 4:781–788CrossRefGoogle Scholar
  48. 48.
    Oliveira-Campos AMF, Rodrigues LM, Esteves AP, Silva ME, Sivasubramanian A, Hrdina R, Soares GMB, Pinto TAD, Machalicky O (2010) Dye and Pigments 87:188–193CrossRefGoogle Scholar
  49. 49.
    Ma L, Luo W, Quinn PJ, Liu Z, Hider RC (2004) Design. J Med Chem 47:6349–6362PubMedCrossRefGoogle Scholar
  50. 50.
    Mulvaney P (1996) Langmuir 12:788–800CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • P. S. Hariharan
    • 1
  • Arvind Sivasubramanian
    • 1
  • Savarimuthu Philip Anthony
    • 1
  1. 1.School of chemical & BiotechnologySASTRA UniversityThanjavurIndia

Personalised recommendations