Journal of Fluorescence

, Volume 24, Issue 2, pp 589–598 | Cite as

Synthesis, CMC Determination, Antimicrobial Activity and Nucleic Acid Binding of A Surfactant Copper(II) Complex Containing Phenanthroline and Alanine Schiff-Base

  • Karuppiah Nagaraj
  • Subramanian Sakthinathan
  • Sankaralingam Arunachalam


A new water-soluble surfactant copper(II) complex [Cu(sal-ala)(phen)(DA)] (sal-ala = salicylalanine, phen = 1,10-phenanthroline, DA = dodecylamine), has been synthesized and characterized by physico-chemical and spectroscopic methods. The critical micelle concentration (CMC) values of this surfactant–copper(II) complex in aqueous solution were obtained from conductance measurements. Specific conductivity data (at 303, 308, 313. 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG0m, ΔH0m and ΔS0m). The interaction of this complex with nucleic acids (DNA and RNA) has been explored by using electronic absorption spectral titration, competitive binding experiment, cyclic voltammetry, circular dichroism (CD) spectra, and viscosity measurements. Electronic absorption studies have revealed that the complex can bind to nucleic acids by the intercalative binding mode which has been verified by viscosity measurements. The DNA binding constants have also been calculated (Kb = 1.2 × 105 M−1 for DNA and Kb = 1.6 × 105 M−1 for RNA). Competitive binding study with ethidium bromide (EB) showed that the complex exhibits the ability to displace the DNA-bound-EB indicating that the complex binds to DNA in strong competition with EB for the intercalative binding site. The presence of hydrophobic ligands, alanine Schiff-base, phenanthroline and long aliphatic chain amine in the complex were responsible for this strong intercalative binding. The surfactant–copper (II) complex was screened for its antibacterial and antifungal activities against various microorganisms. The results were compared with the standard drugs, amikacin(antibacterial) and ketokonazole(antifungal).


Surfactants Copper(II) schiff-base complex Nucleic acid Hyperchromism Critical micelle concentration Antimicrobial 


  1. 1.
    Souza P, Garcia-Vazquez JA, Masaguer JR (1985) Trans Met Chem 10:410–412CrossRefGoogle Scholar
  2. 2.
    Sunaga SAS, Taniguchi T, Miyazaki H, Nabeshima T (2007) Inorg Chem 46:2959–2961PubMedCrossRefGoogle Scholar
  3. 3.
    Quiroga AG, Ranninger CN (2004) Coord Chem Rev 248:119–133CrossRefGoogle Scholar
  4. 4.
    Elerman Y, Kabak M, Elmali A (2002) Z Naturforsch B 57:651–656Google Scholar
  5. 5.
    Bhattacharya S, Mandal SS (1997) Biochim Biophys Acta 1323:29–44PubMedCrossRefGoogle Scholar
  6. 6.
    Hermann T (2005) Curr Opin Struct Biol 15:355–366PubMedCrossRefGoogle Scholar
  7. 7.
    Thomas JR, Hergenrother PJ (2008) Chem Rev 108:1171–1224PubMedCrossRefGoogle Scholar
  8. 8.
    Ni Y, Li D, Kokot S (2006) Anal Biochem 352:31–242CrossRefGoogle Scholar
  9. 9.
    Chow CS, Barton JK (1992) Biochemistry 31:5423–5429PubMedCrossRefGoogle Scholar
  10. 10.
    Kashanian S, Gholivand MB, Ahmadi F et al (2007) Spectrochim Acta A 67:472–478CrossRefGoogle Scholar
  11. 11.
    Uma V, Kanthimathi M, Weyhermuller T, Nair BUJ (2005) Inorg Biochem 99:2299–2307CrossRefGoogle Scholar
  12. 12.
    Trewavas A (1967) Anal Biochem 21:324–329PubMedCrossRefGoogle Scholar
  13. 13.
    Haifz AA (2005) J Surfactant Deterg 8:359–363CrossRefGoogle Scholar
  14. 14.
    Kumaraguru N, Santhakumar K, Arunachalam S, Arumugam MN (2007) Int J Chem Kinet 39:22–28CrossRefGoogle Scholar
  15. 15.
    Arumugam MN, Santhakumar K, Kumaraguru N, Arunachalam S (2003) Asian J Chem 15:191–196Google Scholar
  16. 16.
    Santhakumar K, Kumaraguru N, Arumugam MN, Arunachalam S (2006) Polyhedron 25:1507–1513CrossRefGoogle Scholar
  17. 17.
    Ndifon TP, Moise OA, Julius NN, Mbom DY, Awawou GP, Lynda DN (2010) Res J Chem Environ 14:50–54Google Scholar
  18. 18.
    Shedlovsky T (1932) J Am Chem Soc 54:411–1428Google Scholar
  19. 19.
    Reichmann MF, Rice SA, Thomas CA, Doty P (1954) J Am Chem Soc 76:3047–3053CrossRefGoogle Scholar
  20. 20.
    Dunn TM (1960) The visible and ultraviolet spectra of complex compounds in modern coordination chemistry. Interscience, New YorkGoogle Scholar
  21. 21.
    Garcia-Raso A (1999) Polyhedron 18:871–878CrossRefGoogle Scholar
  22. 22.
    Tadros TF (2005) Applied surfactants, 1st edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  23. 23.
    Morris ML, Busch DH (1960) J Am Chem Soc 82:1521–1524CrossRefGoogle Scholar
  24. 24.
    Strukl JS, Walter JL (1971) Spectrochim Acta A 27:223–238CrossRefGoogle Scholar
  25. 25.
    Schilt AA, Taylor RC (1959) J Inorg Nuc Chem 9:211–221CrossRefGoogle Scholar
  26. 26.
    Speie G, Csihony J, Whalen AM, Pie CG (1996) Inorg Chem 35:3519–3524CrossRefGoogle Scholar
  27. 27.
    Gonzalez-Perez A, Del Castillo JL, Czapkiewicz J, Rodriguez JR (2004) Colloids Surf A Physicochem Eng Asp 232:183–189CrossRefGoogle Scholar
  28. 28.
    Zana RJ (1980) Colloid Interf Sci 78:330–337CrossRefGoogle Scholar
  29. 29.
    Nusselder JJH, Engberts JBFN (1992) J Colloid Interf Sci 148:353–361CrossRefGoogle Scholar
  30. 30.
    Kumaraguru N, Arunachalam S, Arumugam MN, Santhakumar K (2006) Trans Met Chem 31:250–255CrossRefGoogle Scholar
  31. 31.
    Warring MJ (1965) J Mol Biol 13:269–282CrossRefGoogle Scholar
  32. 32.
    Cantor C, Schimmel PR (1980) Biophy Chem Freeman WH, San Francisco, 2:398Google Scholar
  33. 33.
    Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051–3058CrossRefGoogle Scholar
  34. 34.
    Carter MT, Rodriguez M, Bard AJ (1989) J Am Chem Soc 111:8901–8911CrossRefGoogle Scholar
  35. 35.
    Tamil Selvi P, Palaniandavar M (2002) Inorg Chim Acta 337:420–428CrossRefGoogle Scholar
  36. 36.
    Zhao G, Lin H, Zhu S, Sun H, Chen Y (1998) J Inorg Biochem 70:219–226PubMedCrossRefGoogle Scholar
  37. 37.
    Lakowicz JR, Webber G (1973) Biochemistry 12:4161–4170PubMedCrossRefGoogle Scholar
  38. 38.
    Shen Q, Liu J, Chao H, Xue G, Ji L (2001) J Inorg Biochem 83:49–55CrossRefGoogle Scholar
  39. 39.
    Satyanaryana S, Daborusak JC, Chaires JB (1992) Biochemistry 31:9319–9324CrossRefGoogle Scholar
  40. 40.
    Uma Maheswari P, Palaniandavar M (2004) J Inorg Biochem 98:219–230PubMedCrossRefGoogle Scholar
  41. 41.
    Lincoln P, Tuite E, Norden B (1997) J Am Chem Soc 119:1454–1455CrossRefGoogle Scholar
  42. 42.
    Ivanov VI, Minchenkova LE, Shchelkina AK, Poletaev AI (1973) Biopolymers 12:89–110PubMedCrossRefGoogle Scholar
  43. 43.
    Satyanaryana S, Daborusak JC, Chaires JB (1993) Biochemistry 32:2573–2584CrossRefGoogle Scholar
  44. 44.
    Garcia-Raso A, Fiol JJ, Zafra AL, Mata I, Espinosa E, Molins E (2000) Polyhedron 19:673–680CrossRefGoogle Scholar
  45. 45.
    Nyholm RS, Tobe ML (1956) J Chem Soc 1707–1718Google Scholar
  46. 46.
    Buckingham DA, Jones D (1965) Inorg Chem 4:1387–1392CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Karuppiah Nagaraj
    • 1
  • Subramanian Sakthinathan
    • 1
  • Sankaralingam Arunachalam
    • 1
  1. 1.School of ChemistryBharathidasan UniversityTrichirappalliIndia

Personalised recommendations