Skip to main content
Log in

Overlap of Doxycycline Fluorescence with that of the Redox-Sensitive Intracellular Reporter roGFP

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Tetracycline-inducible systems allow for either suppression or induction of transgene expression to facilitate studies of cell physiology. Doxycycline is a preferred inducer for these gene expression systems due to its membrane permeability; however, the heterocyclic structure of doxycycline exhibits fluorogenic properties that can potentially bias measurement of other fluorochromes. Thus the simultaneous use of tetracycline-inducible systems and fluorescent proteins as reporter genes or as intracellular biosensors may lead to potentially confounding results. Herein, using cells which co-express the ratiometric redox sensitive intracellular reporter, roGFP, and a tetracycline-inducible reporter plasmid encoding the reporter gene, mCherry, as a model system, we describe the overlapping intracellular fluorescent signals between doxycycline and commonly used intracellular fluorescent probes. In our cells, the addition of doxycycline to cells caused a dose- and time-dependent increase in cell fluorescence with 405 nm excitation which overlapped with that of the oxidized configuration of roGFP. Incubating cells in concentrations of doxycycline less than 1 μg/mL and removing doxycycline from the media 60 min before performing experiments eliminated fluorescence interference while still maintaining maximal reporter transgene activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95(12):6803–6808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141

    Article  PubMed  CAS  Google Scholar 

  3. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279(13):13044–13053

    Article  PubMed  CAS  Google Scholar 

  4. Pautke C, Vogt S, Tischer T, Wexel G, Deppe H, Milz S, Schieker M, Kolk A (2005) Polychrome labeling of bone with seven different fluorochromes: enhancing fluorochrome discrimination by spectral image analysis. Bone 37(4):441–445

    Article  PubMed  CAS  Google Scholar 

  5. King J, Hamil T, Creighton J, Wu S, Bhat P, McDonald F, Stevens T (2004) Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res 67(2):139–151

    Article  PubMed  CAS  Google Scholar 

  6. Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279(21):22284–22293

    Article  PubMed  CAS  Google Scholar 

  7. Produit-Zengaffinen N, Davis-Lameloise N, Perreten H, Becard D, Gjinovci A, Keller PA, Wollheim CB, Herrera P, Muzzin P, Assimacopoulos-Jeannet F (2007) Increasing uncoupling protein-2 in pancreatic beta cells does not alter glucose-induced insulin secretion but decreases production of reactive oxygen species. Diabetologia 50(1):84–93

    Article  PubMed  CAS  Google Scholar 

  8. Lee CF, Qiao M, Schroder K, Zhao Q, Asmis R (2010) Nox4 is a novel inducible source of reactive oxygen species in monocytes and macrophages and mediates oxidized low density lipoprotein-induced macrophage death. Circ Res 106(9):1489–1497

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Schweiger D, Furstenberger G, Krieg P (2007) Inducible expression of 15-lipoxygenase-2 and 8-lipoxygenase inhibits cell growth via common signaling pathways. J Lipid Res 48(3):553–564

    Article  PubMed  CAS  Google Scholar 

  10. Schneider S, Schmitt MO, Brehm G, Reiher M, Matousek P, Towrie M (2003) Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+. Photochem Photobiol Sci 2(11):1107–1117

    Article  PubMed  CAS  Google Scholar 

  11. Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. CKJ: Clin Kidney J 5(suppl 1):i3–i14

    CAS  Google Scholar 

  12. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73(5):2782–2790

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218):1766–1769

    Article  PubMed  CAS  Google Scholar 

  14. Chopra I, Hawkey PM, Hinton M (1992) Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother 29(3):245–277

    Article  PubMed  CAS  Google Scholar 

  15. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260, second page, table of contents

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Nikaido H, Thanassi DG (1993) Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother 37(7):1393–1399

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Franklin TJ (1966) Mode of action of the tetracyclines. Biochemical studies of antimicrobial drugs. Sixteenth Symposium of the Society for General Microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  18. Fouty RA (1978) Liquid protein diet magnesium dificiency and cardiac arrest. JAMA 240(24):2632–2633

    Article  PubMed  CAS  Google Scholar 

  19. Pautke C, Vogt S, Kreutzer K, Haczek C, Wexel G, Kolk A, Imhoff AB, Zitzelsberger H, Milz S, Tischer T (2010) Characterization of eight different tetracyclines: advances in fluorescence bone labeling. J Anat 217(1):76–82

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported, in part, by an American Heart Association Grant-in-Aid (AHA-271032) from the Southeastern region.

Disclosures/Conflict of interest statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Fouty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khader, H., Solodushko, V., Al-Mehdi, A.B. et al. Overlap of Doxycycline Fluorescence with that of the Redox-Sensitive Intracellular Reporter roGFP. J Fluoresc 24, 305–311 (2014). https://doi.org/10.1007/s10895-013-1331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1331-6

Keywords

Navigation