Skip to main content
Log in

New Insights on the 7-azaindole Photophysics: The Overlooked Role of Its Non Phototautomerizable Hydrogen Bonded Complexes

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper we explore the formation and the photophysical properties of the scarcely studied open hydrogen bonded aggregates of 7-Azaindole, 7AI. Thus, we have analyzed the influence that the increase of the 7AI concentration and the decrease of the temperature have on the 7AI photophysics. To help the interpretation of the results, the 7AI-Pyridine system has been used as the model for the analysis of the photophysical properties attributable to the open Npyrrolic − HNpyridinic hydrogen bonded aggregates. Also, the hydrogen bond interactions have been studied by means of the atom in molecule approach from the Bader theory. Experimental and theoretical results support that the formation of open hydrogen bonded aggregates, (−7AI-)n with n ≥ 2 can efficiently compete with that of the profusely studied centro-symmetric cyclic dimer (7AI)2. Moreover, these aggregates suffer a proton-driven electron transfer process that strongly quenches their room temperature fluorescence and, therefore, masks their presence in the 7AI solutions. Therefore, because most of the studies on the 7AI photophysics have been interpreted without considering the existence of such aggregates and, more important, ignoring its quenching process, many conclusions obtained from these studies should be carefully revised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taylor C, El-Bayoumi A, Kasha M (1969) Excited-state two-proton tautomerism in hydrogen-bonded N-Heterocyclic base pairs. Proc Natl Acad Sci USA 63:253–260

    Article  CAS  Google Scholar 

  2. For a recent review see: Sekiya H, Sakota K (2008) Excited-state double-proton transfer in a model DNA base pair: resolution for stepwise and concerted mechanism controversy in the 7-Azaindole dimer revealed by Frequency and time-resolved spectroscopy. Photochem Photobiol C: Photochem Rev 9: 81–91

    Google Scholar 

  3. Bulska H, Grabowski A, Pakula B, Sepiol J, Waluk J, Wild UP (1984) Spectroscopy of doubly hydrogen-bonded 7-Azaindole. Reinvestigation of the excited state reaction. J Luminescence 29:65–81

    Article  CAS  Google Scholar 

  4. Fuke K, Kaya K (1989) Dynamics of double-proton-transfer reaction in the excited-state model hydrogen-bonded base pairs. J Phys Chem 93:614–621

    Article  CAS  Google Scholar 

  5. Catalán J (2002) On the evidence obtained by exciting 7-Azaindole at 320 nm in 10–2 M solutions. J Phys Chem 106:6738–6742

    Article  Google Scholar 

  6. Walmsly J (1981) Self-association of 7-Azaindole in Nonpolar Solvents. J Phys Chem 85:3181–3187

    Article  Google Scholar 

  7. Fedor AM, Korter TK (2006) Terahertz spectroscopy of 7-Azaindole clusters in solution. Chem Phys Lett 429:405–409

    Article  CAS  Google Scholar 

  8. Lim H, Park S, Jang D (2011) Excited-state double proton transfer of 7-Azaindole dimers in a low-temperature organic glass. Photochem Photobiol 87:766–771

    Article  CAS  PubMed  Google Scholar 

  9. García-Fernández E, Carmona C, Muñoz MA, Hidalgo J, Balón M (2012) A photophysical study of the α-Carboline (1-Azacarbazole) aggregation process. Photochem Photobiol 88:277–284

    Article  PubMed  Google Scholar 

  10. Bader RFW (1994) Atoms in molecules. A quantum theory. Clarendon, Oxford, 1994

    Google Scholar 

  11. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  12. Becke ADJ (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Sakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision D.0. Gaussian Inc, Pittsburgh

    Google Scholar 

  15. Biegler-König F, Schönbohm J (2002) Update of the AIM2000-Program for atoms in molecules. J Comp Chem 23:1489–1494

    Article  Google Scholar 

  16. Hidalgo J, Sánchez-Coronilla A, Muñoz MA, Carmona C, Balón M (2007) Fluorescence Quenching of Betacarboline (9H-pyrido [3,4-b]indole) induced by intermolecular hydrogen bonding with pyridines. J Luminescence 127:671–677

    Article  CAS  Google Scholar 

  17. Hidalgo J, Sánchez-Coronilla A, Balón M, Muñoz MA, Carmona C (2009) Dual emission of temperature-induced betacarboline self-associated hydrogen bond aggregates. Photochem Photobiol Sci 8:414–420

    Article  CAS  PubMed  Google Scholar 

  18. Martín M, Ikeda N, Okada T, Mataga N (1982) Picosecond laser photolysis studies of deactivation processes of excited hydrogen-bonding complexes. 2. Dibenzocarbazole-pyridine systems. J Phys Chem 86:4148–4156

    Article  Google Scholar 

  19. Miyasaka H, Tabata A, Ojima S, Ikeda N, Mataga N (1993) Femtosecond-picosecond laser photolysis studies on the mechanisms of fluorescence quenching induced by Hydrogen-Bonding Interactions: 1-Pyrenol-pyridine systems. J Phys Chem 97:8222–8228

    Article  CAS  Google Scholar 

  20. Herbich J, Kijak M, Zielinska A, Thummel RP, Waluk J (2002) Fluorescence quenching by pyridine and derivatives induced by intermolecular hydrogen bonding to pyrrole-containing heteroaromatics. J Phys Chem 106:2158–2163

    Article  CAS  Google Scholar 

  21. Mataga N, Chosrowjan H, Taniguchi S (2005) Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: our early studies and recent developments. J Photochem Photobiol C: Photochem Rev 6:37–79

    Article  CAS  Google Scholar 

  22. Sobolewski AL, Domcke W (2007) Computational studies of the photophysics of hydrogen-bonded molecular systems. J Phys Chem 111:11725–11735

    Article  CAS  Google Scholar 

  23. Lan Z, Frutos L, Sobolewski A, Domcke W (2008) Photochemistry of hydrogen-bonded aromatic pairs: quantum dynamical calculations for the pyrrole–pyridine complex. Proc Natl Acad Sci USA 105:12707–12712

    Article  CAS  PubMed  Google Scholar 

  24. Ingham KC, El-Bayoumi MA (1974) Photoinduced double proton transfer in a model hydrogen bonded base pair. Effects of temperature and deuterium substitution. J Am Chem Soc 96:1674–1682

    Article  CAS  Google Scholar 

  25. Kwon OH, Zewail AH (2007) Double proton transfer dynamics of model DNA base pairs in the condensed phase. Proc Natl Acad Sci USA 104:8703–8708

    Article  CAS  PubMed  Google Scholar 

  26. Takeuchi S, Tahara T (1998) Femtosecond ultraviolet–visible fluorescence study of the excited-state proton-transfer reaction of 7-Azaindole dimer. J Phys Chem A 102:7740–7753

    Article  CAS  Google Scholar 

  27. Catalán J, Kasha M (2000) Photophysics of 7-Azaindole, Its Doubly-H-Bonded base-pair, and corresponding proton-transfer-tautomer dimeric species, via defining experimental and theoretical results. J Phys Chem A 104:10812–10820

    Article  Google Scholar 

  28. Takeuchi S, Tahara T (2007) Femtosecond ultraviolet–visible fluorescence study of the excited-state proton-transfer reaction of 7-Azaindole dimer. Proc Natl Acad Sci USA 104:5285–5290

    Article  CAS  PubMed  Google Scholar 

  29. Catalán J (2010) Activation energy of the two-proton phototautomerism in 7-Azaindole dimer and its medium-dependence. J Phys Chem A 114:5666–5673

    Article  PubMed  Google Scholar 

  30. Chou P, Liao J, Wei C, Yang C, Yu W, Chou Y (2000) Excited-state double proton transfer on 3-Iodo-7-Azaindole dimer in a single crystal. J Am Chem Soc 122:986–987

    Article  CAS  Google Scholar 

  31. Douhal A, Kim SK, Zewail AH (1995) Femtosecond molecular dynamics of tautomerization in model base pairs. Nature 3:260–263

    Article  Google Scholar 

  32. Dufour P, Dartiguenave Y, Dartiguenave M, Dufour N, Lebuis AM, Bélanger-Gariépy F, Beauchamp AL (1990) Crystal structures of 7-Azaindole, an unusual hydrogen-bonded tetramer, and of two of its Methylmercury(II) complexes. Can J Chem 68:193–201

    Article  CAS  Google Scholar 

  33. Sánchez-Coronilla A, Balón M, Sánchez-Marcos E, Muñoz MA, Carmona C (2010) A theoretical study of the hydrogen bond donor capability and co-operative effects in the hydrogen bond complexes of the Diaza-aromatic Betacarbolines. Phys Chem Chem Phys 12:5276–5284

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge financial support from the Junta de Andalucía, FQM-106. Calculations were done through CICA, Centro Informático Científico de Andalucía, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Balón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmona, C., García-Fernández, E., Hidalgo, J. et al. New Insights on the 7-azaindole Photophysics: The Overlooked Role of Its Non Phototautomerizable Hydrogen Bonded Complexes. J Fluoresc 24, 45–55 (2014). https://doi.org/10.1007/s10895-013-1267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1267-x

Keywords

Navigation