Journal of Fluorescence

, Volume 23, Issue 6, pp 1107–1111 | Cite as

A Schiff-Based Colorimetric Fluorescent Sensor with the Potential for Detection of Fluoride Ions

  • Cheng-Yin Huang
  • Chin-Feng Wan
  • Jiun-Ly Chir
  • An-Tai Wu


A simple Schiff-based colorimetric fluorescent receptor 1 was prepared. It exhibits a “turn-on-type” mode with high sensitivity in the presence of F. The change in color is very easily observed by the naked eye in the presence of F, whereas other anions do not induce such a change. Job plot indicated a 1:2 complexation stoichiometry between receptor 1 and F. The association constant for 1-F in CH3CN was determined as 1.32*105 M−2 by a Hill plot.

Graphic Abstract

A Schiff-based colorimetric fluorescent sensor with the potential for detection of fluoride ions Cheng-Yin Huang, Chin-Feng Wan, Jiun-Ly Chir, An-Tai Wu


Schiff base Fluorescence Turn-on 



We thank the National Science Council of Taiwan for financial support.

Supplementary material

10895_2013_1257_MOESM1_ESM.doc (352 kb)
ESM 1 Supporting Information Available: The 1H NMR and 13C NMR spectra are available. Supplementary data associated with this article can be found. (DOC 352 kb)


  1. 1.
    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566PubMedCrossRefGoogle Scholar
  2. 2.
    de Silva AP, Fox DB, Huxley AJM, Moody TS (2000) Combining luminescence, coordination and electron transfer for signalling purposes. Coord Chem Rev 205:41–57CrossRefGoogle Scholar
  3. 3.
    Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549PubMedCrossRefGoogle Scholar
  4. 4.
    Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40CrossRefGoogle Scholar
  5. 5.
    Zhang XB, Peng J, He CL, Shen GL, Yu RQ (2006) A highly selective fluorescent sensor for Cu2+ based on 2-(2′-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix. Anal Chim Acta 567:189–195CrossRefGoogle Scholar
  6. 6.
    Ludwig R, Dzung NTK (2002) Calixarene-based molecules for cation recognition. Sensors 2:397–416CrossRefGoogle Scholar
  7. 7.
    Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science, Mill ValleyGoogle Scholar
  8. 8.
    Kirk KL (1991) Biochemistry of Halogens and Inorganic Halides. Plenum Press, New YorkCrossRefGoogle Scholar
  9. 9.
    Lin Z, Ou S, Duan C, Zhang B, Bai Z (2006) Naked-eye detection of fluoride ion in water: a remarkably selective easy-to-prepare test paper. Chem Commun: 624–626Google Scholar
  10. 10.
    Zhang T, Anslyn EV (2006) A colorimetric boronic acid based sensing ensemble for carboxy and phospho sugars. Org Lett 8:1649–1652PubMedCrossRefGoogle Scholar
  11. 11.
    Yen Y, Ho K (2006) Synthesis of colorimetric receptors for dicarboxylate anions: a unique color change for malonate. Tetrahedron Lett 47:1193–1196CrossRefGoogle Scholar
  12. 12.
    Boiocchi M, Del Boca L, Gomez DE, Fabbrizzi L, Licchelli M, Monzani E (2005) Anion induced urea deprotonation. Chem Eur J 11:3097–3104PubMedCrossRefGoogle Scholar
  13. 13.
    Gomez DE, Fabbrizzi L, Licchelli MJ (2005) Why, on interaction of urea-based receptors with fluoride, beautiful colors develop. Org Chem 70:5717–5720CrossRefGoogle Scholar
  14. 14.
    Hu H, Chen C (2006) A new fluorescent chemosensor for anion based on an artificial cyclic tetrapeptide. Tetrahedron Lett 47:175–179CrossRefGoogle Scholar
  15. 15.
    Lee SH, Kim HJ, Lee YO, Vicens J, Kim JS (2006) Fluoride sensing with a PCT-based calix[4]arene. Tetrahedron Lett 47:4373–4376CrossRefGoogle Scholar
  16. 16.
    Xu S, Chen KC, Tian HJ (2005) A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine. Mater Chem: 2676–2680Google Scholar
  17. 17.
    Cho EJ, Ryu BJ, Lee YJ, Nam KC (2005) Visible colorimetric fluoride ion sensors. Org Lett 7:2607–2609PubMedCrossRefGoogle Scholar
  18. 18.
    Jose DA, Kumar DK, Ganguly B, Das A (2004) Efficient and simple colorimetric fluoride ion sensor based on receptors having urea and thiourea binding sites. Org Lett 6:3445–3448PubMedCrossRefGoogle Scholar
  19. 19.
    Chetia B, Iyer PK (2008) 2,6-Bis(2-benzimidazolyl)pyridine as a chemosensor for fluoride ions. Tetrahedron Lett 49:94–97CrossRefGoogle Scholar
  20. 20.
    Cho EJ, Moon JW, Ko SW, Lee JY, Kim SK, Yoon J, Nam KCJ (2003) A New fluoride selective fluorescent as well as chromogenic chemosensor containing a naphthalene urea derivative. Am Chem Soc 125:12376–12377CrossRefGoogle Scholar
  21. 21.
    Xu GX, Tarr MA (2004) A novel fluoride sensor based on fluorescence enhancement. Chem Commun: 1050–1051Google Scholar
  22. 22.
    Curiel D, Cowley A, Beer PD (2005) Indolocarbazoles: a new family of anion sensors. Chem Commun: 236–238Google Scholar
  23. 23.
    Jun EJ, Swamy MK, Bang H, Kim S, Yoon J (2006) Anthracene derivatives bearing thiourea group as fluoride selective fluorescent and colorimetric chemosensors. Tetrahedron Lett 47:3103–3106CrossRefGoogle Scholar
  24. 24.
    Peng Y, Dong Y-M, Dong M, Wang Y-WJ (2012) A selective, sensitive, colorimetric, and fluorescence probe for relay recognition of fluoride and Cu(II) Ions with “off−on−off” switching in ethanol−water solution. Org Chem 77:9072–9080CrossRefGoogle Scholar
  25. 25.
    Sokkalingam P, Lee C-H (2011) Highly sensitive fluorescence “turn-on” indicator for fluoride anion with remarkable selectivity in organic and aqueous media. J Org Chem 76:3820–3828PubMedCrossRefGoogle Scholar
  26. 26.
    Jiang Y, Hu X, Hu J, Liu H, Zhong H, Liu S (2011) Reactive fluorescence turn-on probes for fluoride Ions in purely aqueous media fabricated from functionalized responsive block copolymers. Macromolecules 44:8780–8790CrossRefGoogle Scholar
  27. 27.
    Liu XY, Bai DR, Wang S (2006) Charge-transfer emission in nonplanar three coordinate organoboron compounds for fluorescent sensing of fluoride. Angew Chem Int Ed 45:5475–5478CrossRefGoogle Scholar
  28. 28.
    Swamy KMK, Lee YJ, Lee HN, Chun J, Kim Y, Kim S-J, Yoon JJ (2006) A new fluorescein derivative bearing a boronic acid group as a fluorescent chemosensor for fluoride ion. Org Chem 71:8626–8628CrossRefGoogle Scholar
  29. 29.
    Lin Z-H, Zhao Y-G, Duan C-Y, Zhang B-G, Bai Z-P (2006) A highly selective chromo- and fluorogenic dual responding fluoride sensor: naked-eye detection of F− ion in natural water via a test paper. Dalton Trans: 3678–3684Google Scholar
  30. 30.
    Nishimura T, Xu S-Y, Jiang Y-B, Fossey JS, Sakurai K, Bull SD, James TD (2013) A simple visual sensor with the potential for determining the concentration of fluoride in water at environmentally significant levels. Chem Commun 49:478–480CrossRefGoogle Scholar
  31. 31.
    Safin DA, Robeyns K, Garcia Y (2012) Solid-state thermo- and photochromism in N, N9-bis(5-X-salicylidene)diamines (X = H, Br). RCS Adv 2:11379–11388Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cheng-Yin Huang
    • 1
  • Chin-Feng Wan
    • 2
  • Jiun-Ly Chir
    • 1
  • An-Tai Wu
    • 1
  1. 1.Department of ChemistryNational Changhua University of EducationChanghuaTaiwan
  2. 2.School of Applied ChemistryChung Shan Medical UniversityTaichung CityTaiwan

Personalised recommendations