Skip to main content

Advertisement

Log in

A Schiff-Based Colorimetric Fluorescent Sensor with the Potential for Detection of Fluoride Ions

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A simple Schiff-based colorimetric fluorescent receptor 1 was prepared. It exhibits a “turn-on-type” mode with high sensitivity in the presence of F. The change in color is very easily observed by the naked eye in the presence of F, whereas other anions do not induce such a change. Job plot indicated a 1:2 complexation stoichiometry between receptor 1 and F. The association constant for 1-F in CH3CN was determined as 1.32*105 M−2 by a Hill plot.

A Schiff-based colorimetric fluorescent sensor with the potential for detection of fluoride ions Cheng-Yin Huang, Chin-Feng Wan, Jiun-Ly Chir, An-Tai Wu

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  2. de Silva AP, Fox DB, Huxley AJM, Moody TS (2000) Combining luminescence, coordination and electron transfer for signalling purposes. Coord Chem Rev 205:41–57

    Article  Google Scholar 

  3. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  PubMed  CAS  Google Scholar 

  4. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  5. Zhang XB, Peng J, He CL, Shen GL, Yu RQ (2006) A highly selective fluorescent sensor for Cu2+ based on 2-(2′-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix. Anal Chim Acta 567:189–195

    Article  CAS  Google Scholar 

  6. Ludwig R, Dzung NTK (2002) Calixarene-based molecules for cation recognition. Sensors 2:397–416

    Article  Google Scholar 

  7. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science, Mill Valley

    Google Scholar 

  8. Kirk KL (1991) Biochemistry of Halogens and Inorganic Halides. Plenum Press, New York

    Book  Google Scholar 

  9. Lin Z, Ou S, Duan C, Zhang B, Bai Z (2006) Naked-eye detection of fluoride ion in water: a remarkably selective easy-to-prepare test paper. Chem Commun: 624–626

  10. Zhang T, Anslyn EV (2006) A colorimetric boronic acid based sensing ensemble for carboxy and phospho sugars. Org Lett 8:1649–1652

    Article  PubMed  CAS  Google Scholar 

  11. Yen Y, Ho K (2006) Synthesis of colorimetric receptors for dicarboxylate anions: a unique color change for malonate. Tetrahedron Lett 47:1193–1196

    Article  CAS  Google Scholar 

  12. Boiocchi M, Del Boca L, Gomez DE, Fabbrizzi L, Licchelli M, Monzani E (2005) Anion induced urea deprotonation. Chem Eur J 11:3097–3104

    Article  PubMed  CAS  Google Scholar 

  13. Gomez DE, Fabbrizzi L, Licchelli MJ (2005) Why, on interaction of urea-based receptors with fluoride, beautiful colors develop. Org Chem 70:5717–5720

    Article  Google Scholar 

  14. Hu H, Chen C (2006) A new fluorescent chemosensor for anion based on an artificial cyclic tetrapeptide. Tetrahedron Lett 47:175–179

    Article  CAS  Google Scholar 

  15. Lee SH, Kim HJ, Lee YO, Vicens J, Kim JS (2006) Fluoride sensing with a PCT-based calix[4]arene. Tetrahedron Lett 47:4373–4376

    Article  CAS  Google Scholar 

  16. Xu S, Chen KC, Tian HJ (2005) A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine. Mater Chem: 2676–2680

  17. Cho EJ, Ryu BJ, Lee YJ, Nam KC (2005) Visible colorimetric fluoride ion sensors. Org Lett 7:2607–2609

    Article  PubMed  CAS  Google Scholar 

  18. Jose DA, Kumar DK, Ganguly B, Das A (2004) Efficient and simple colorimetric fluoride ion sensor based on receptors having urea and thiourea binding sites. Org Lett 6:3445–3448

    Article  PubMed  CAS  Google Scholar 

  19. Chetia B, Iyer PK (2008) 2,6-Bis(2-benzimidazolyl)pyridine as a chemosensor for fluoride ions. Tetrahedron Lett 49:94–97

    Article  CAS  Google Scholar 

  20. Cho EJ, Moon JW, Ko SW, Lee JY, Kim SK, Yoon J, Nam KCJ (2003) A New fluoride selective fluorescent as well as chromogenic chemosensor containing a naphthalene urea derivative. Am Chem Soc 125:12376–12377

    Article  CAS  Google Scholar 

  21. Xu GX, Tarr MA (2004) A novel fluoride sensor based on fluorescence enhancement. Chem Commun: 1050–1051

  22. Curiel D, Cowley A, Beer PD (2005) Indolocarbazoles: a new family of anion sensors. Chem Commun: 236–238

  23. Jun EJ, Swamy MK, Bang H, Kim S, Yoon J (2006) Anthracene derivatives bearing thiourea group as fluoride selective fluorescent and colorimetric chemosensors. Tetrahedron Lett 47:3103–3106

    Article  CAS  Google Scholar 

  24. Peng Y, Dong Y-M, Dong M, Wang Y-WJ (2012) A selective, sensitive, colorimetric, and fluorescence probe for relay recognition of fluoride and Cu(II) Ions with “off−on−off” switching in ethanol−water solution. Org Chem 77:9072–9080

    Article  CAS  Google Scholar 

  25. Sokkalingam P, Lee C-H (2011) Highly sensitive fluorescence “turn-on” indicator for fluoride anion with remarkable selectivity in organic and aqueous media. J Org Chem 76:3820–3828

    Article  PubMed  CAS  Google Scholar 

  26. Jiang Y, Hu X, Hu J, Liu H, Zhong H, Liu S (2011) Reactive fluorescence turn-on probes for fluoride Ions in purely aqueous media fabricated from functionalized responsive block copolymers. Macromolecules 44:8780–8790

    Article  CAS  Google Scholar 

  27. Liu XY, Bai DR, Wang S (2006) Charge-transfer emission in nonplanar three coordinate organoboron compounds for fluorescent sensing of fluoride. Angew Chem Int Ed 45:5475–5478

    Article  CAS  Google Scholar 

  28. Swamy KMK, Lee YJ, Lee HN, Chun J, Kim Y, Kim S-J, Yoon JJ (2006) A new fluorescein derivative bearing a boronic acid group as a fluorescent chemosensor for fluoride ion. Org Chem 71:8626–8628

    Article  CAS  Google Scholar 

  29. Lin Z-H, Zhao Y-G, Duan C-Y, Zhang B-G, Bai Z-P (2006) A highly selective chromo- and fluorogenic dual responding fluoride sensor: naked-eye detection of F− ion in natural water via a test paper. Dalton Trans: 3678–3684

  30. Nishimura T, Xu S-Y, Jiang Y-B, Fossey JS, Sakurai K, Bull SD, James TD (2013) A simple visual sensor with the potential for determining the concentration of fluoride in water at environmentally significant levels. Chem Commun 49:478–480

    Article  CAS  Google Scholar 

  31. Safin DA, Robeyns K, Garcia Y (2012) Solid-state thermo- and photochromism in N, N9-bis(5-X-salicylidene)diamines (X = H, Br). RCS Adv 2:11379–11388

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Council of Taiwan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Tai Wu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Supporting Information Available: The 1H NMR and 13C NMR spectra are available. Supplementary data associated with this article can be found. (DOC 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CY., Wan, CF., Chir, JL. et al. A Schiff-Based Colorimetric Fluorescent Sensor with the Potential for Detection of Fluoride Ions. J Fluoresc 23, 1107–1111 (2013). https://doi.org/10.1007/s10895-013-1257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1257-z

Keywords

Navigation