Journal of Fluorescence

, Volume 23, Issue 4, pp 753–760 | Cite as

Positions of the Glycans in Molluscan Hemocyanin, Determined by Fluorescence Spectroscopy

  • Elena Kostadinova
  • Pavlina Dolashka
  • Lyudmila Velkova
  • Aleksandar Dolashki
  • Stefan Stevanovic
  • Wolfgang Voelter


Molluscan hemocyanins are glycoproteins with different quaternary and carbohydrate structures. It was suggested that the carbohydrate chains of some Hcs are involved in their antiviral and antitumor effect, as well in the organization of the quaternary structure of the molecules. Using a well-known complex for saccharide sensing, positions and access to the carbohydrate chains in the native hemocyanins from Rapana venosa (RvH) and Helix lucorum (HlH) and also their structural subunits (RvH1, RvH2 and βcHlH) and functional units (FUs) were analysed by fluorescence spectroscopy and circular dichroism. Almost no effect was observed in the fluorescence emission after titration of the complex with native RvH and HlH due to lack of free hydroxyl groups which are buried in the didecameric form of the molecules. Titration with the structural subunits βcHlH and RvH2, increasing of the emission indicates the presence of free hydroxyl groups compared to the native molecules. Complex titration with the structural subunit βc-HlH of H. lucorum Hcs leads to a 2.5 fold increase in fluorescence intensity. However, the highest emission was measured after titration of the complex with FU βcHlH-g. The result was explained by the structural model of βcHlH-g showing the putative position of the glycans on the surface of the molecule. The results of the fluorescent measurements are in good correlation with those of the circular dichroism data, applied to analyse the effect of titration on the secondary structure of the native molecules and functional units. The results also support our previously made suggestion that the N-linked oligosaccharide trees are involved in the quaternary organization of molluscan Hcs.


Hemocyanins Glycans Fluorescence spectroscopy and circular dichroism 



This work was financed by research grant № 403 BG051PO001-3.3-05/0001 scheduled “science-business “funded by the Operational Programme” Human Resources”, by Bulgarian Ministry of Education, project “Young researchers” DMU 03/26, as well as P. Dolashka and E. Kostadinova thank to German Academic Exchange Service (DAAD) for also supporting this study.


  1. 1.
    Martin A, Depoix F, Stohr M, Meissner U, Hagner-Holler S, Hammouti K (2007) Limulus polyphemus hemocyanin: 10 Å structure, sequence analysis, molecular modelling and rigid-body fitting reveal the interfaces between the eight hexamers. J Mol Biol 366:1332–1350PubMedCrossRefGoogle Scholar
  2. 2.
    Del Campo M, Arancibia S, Nova E, Salazar F, González A, Moltedo B, De Ioannes P, Ferreira J, Manubens A, Becker MI (2011) Hemocyanins as immunostimulants. Rev Rev Me Chil 139:236–246Google Scholar
  3. 3.
    Harris JR, Markl J (1999) Keyhole limpet hemocyanin (KLH): a biomedical review. Micron 30:597–623PubMedCrossRefGoogle Scholar
  4. 4.
    Decker H, Hellmann N, Jaenicke E, Lieb B, Meissner U, Markl J (2007) Minireview: recent progress in hemocyanin research. Integr Comp Biol 47:631–644PubMedCrossRefGoogle Scholar
  5. 5.
    Gatsogiannis C, Markl J (2009) Keyhole limpet hemocyanin: 9-A CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units. J Mol Biol 385:963–983PubMedCrossRefGoogle Scholar
  6. 6.
    Meissner U, Dube P, Harris JR, Stark H, Markl J (2000) Structure of a molluscan hemocyanin didecamer (HtH1 from Haliotis tuberculata) at 12 A resolution by cryoelectron microscopy. J Mol Biol 298:21–34PubMedCrossRefGoogle Scholar
  7. 7.
    Schütz J, Dolashka-Angelova P, Abrashev R, Nicolov P, Voelter W (2001) Isolation and spectroscopic characterization of the structural subunits of keyhole limpet hemocyanin. Biochim Biophys Acta 1546:325–336PubMedCrossRefGoogle Scholar
  8. 8.
    Dolashka-Angelova P, Dolashki A, Savvides S, Hristova R, Van Beeumen J, Voelter W, Devreese B, Weser U, Di Muro P, Salvato B, Stevanovic S (2005) Structure of hemocyanin subunit caeSS2 of the crustacean Mediterranean crab Carcinus aestuarii. J Biochem 138:303–312PubMedCrossRefGoogle Scholar
  9. 9.
    Dolashka-Angelova P, Beltramini M, Dolashki A, Salvato B, Voelter W (2001) Carbohydrate composition of Carcinus aestuarii hemocanin. Arch Biochem Biophys 389:153–158PubMedCrossRefGoogle Scholar
  10. 10.
    Velkova L, Dolashka P, Lieb B, Dolashki A, Voelter W, Van Beeumen J, Devreese B (2011) Glycan structures of the structural subunit (HtH1) of Haliotis tuberculata hemocyanin. Glycoconj J 28(6):385–395PubMedCrossRefGoogle Scholar
  11. 11.
    Dolashka-Angelova P, Velkova L, Shishkov S, Kostova K, Dolashki A, Dimitrov I, Atanasov B, Devreese B, Voelter W, Van Beeumen J (2010) Glycan structures and antiviral effect of the structural subunit RvH2 of Rapana hemocyanin. Carboh Res 345:2361–2367CrossRefGoogle Scholar
  12. 12.
    Dolashka-Angelova P, Lieb B, Velkova L, Heilen N, Sandra K, Nikolaeva-Glomb L, Dolashki A, Galabov AS, Beeumen JV, Stevanovic S, Voelter W, Devreese B (2009) Identification of glycosylated sites in Rapana hemocyanin by mass spectrometry and gene sequence, and their antiviral effect. Bioconjug Chem 20:1315–1322PubMedCrossRefGoogle Scholar
  13. 13.
    Sandra K, Dolashka-Angelova P, Devreese B, Van Beeumen J (2007) New insights in Rapana venosa hemocyani N-glycosylation resulting from on-line mass spectrometric analyses. Glycobiology 17:141–156PubMedCrossRefGoogle Scholar
  14. 14.
    Wood E, Chaplin M, Gielens C, De Sadeleer J, Préaux G, Lontie R (1985) Relative molecular mass of the polypeptide chain of βc-haemocyanin of Helix pomatia and carbohydrate composition of the functional units. Comp Biochem Physiol 82:179–186CrossRefGoogle Scholar
  15. 15.
    Van Kuik JA, Sijbesma RP, Kamerling JP, Vliegenthart JFG, Wood EJ (1987) Primary structure determination of seven novel N-linked carbohydrate chains derived from hemocyanin of Lymnaea stagnalis. Eur J Biochem 169:399–411PubMedCrossRefGoogle Scholar
  16. 16.
    Wuhrer M, Robijn M, Koeleman C, Balog C, Geyer R, Deelder A, Hokke C (2004) A novel Gal(b1-4)Gal(b1-4)Fuc(a1-6)-core modification attached to the proximal N-acetylglucosamine of keyhole limpet haemocyanin (KLH) N-glycans. Biochem J 378:625–632PubMedCrossRefGoogle Scholar
  17. 17.
    Dolashka P, Velkova L, Iliev I, Beck A, Dolashki A, Yossifova L, Toshkova R, Voelter W, Zacharieva S (2011) Antitumor activity of glycosylated molluscan hemocyanins via guerin ascites tumor. Immunol Investig 40(2):130–149CrossRefGoogle Scholar
  18. 18.
    Jurincic-Winkler CD, Metz KA, Beuth J, Klippel KF (2000) Keyhole limpet hemocyanin for carcinoma in situ of the bladder: a long-term follow-up study. Eur Urol 37(3):45–49PubMedCrossRefGoogle Scholar
  19. 19.
    Jurincic C, Engelmann U, Gasch J, Klippel K (1988) Immunotherapy in bladder cancer with keyhole-limpet hemocyanin: a randomized study. J Urol 139:723–726PubMedGoogle Scholar
  20. 20.
    Riggs DR, Jackson BJ, Vona-Davis L, Nigam A, McFadden DW (2002) In vitro anticancer effects of a novel immunostimulant: keyhole limpet hemocyanin. J Surg Res 108:279–284PubMedCrossRefGoogle Scholar
  21. 21.
    Riggs DR, Jackson BJ, Vona-Davis L, Nigam A, McFadden DW (2005) In vitro effects of keyhole limpet hemocyanin in breast and pancreatic cancer in regards to cell growth, cytokine production, and apoptosis. The Am J Surg 189:680–684CrossRefGoogle Scholar
  22. 22.
    Iliev I, Toshkova R, Dolashka-Angelova P, Yossifova L, Hristova R, Yaneva J, Zacharieva S (2008) Haemocyanins from Rapana venosa and Helix vulgaris display an antitumour activity via specific activation of spleen lymphocytes. Compt Rend Acad Bulg Sci 61(2):203–210Google Scholar
  23. 23.
    Moltedo B, Faunes F, Haussmann D, Ioannes PD, Ioannes AED, Puente J, Becker MI (2006) Immunotherapeutic effect of concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins. The J Urol 176:2690–2695CrossRefGoogle Scholar
  24. 24.
    Toshkova R, Velkova L, Voelter W, Dolashka-Angelova P (2007) Protective effect of Rapana venosa Hemocyanin (RvH) on survivability of hamsters with transplanted myeloid Graffi tumours. C R Acad Bulg Sci 59(9):977–982Google Scholar
  25. 25.
    Toshkova R, Ivanova E, Hristova R, Voelter W, Dolashka-Angelova P (2009) Effect of Rapana venosa hemocyanin on Antibody-Dependent Cell Cytotoxicicity (ADCC) and mitogen responsibility of lymphocytes from hamsters with progressing myeloid tumors. World J Med Sci 4(2):135–142Google Scholar
  26. 26.
    Dolashka-Angelova P, Stevanovic S, Neychev H, Schwarz H, Voelter W (2008) Immunological potential of Helix vulgaris and Rapana venosa hemocyanins. Immunolog Investig 37(8):822–840CrossRefGoogle Scholar
  27. 27.
    Kantele A, Häkkinen MP, Zivny J, Elson CO, Mestecky J, Kantele JM (2011) Humoral immune response to keyhole limpet haemocyanin, the protein carrier in cancer vaccines. Clin Dev Immunol 614383:1–6CrossRefGoogle Scholar
  28. 28.
    Miles D, Roché H, Martin M, Perren TJ, Cameron DA, Glaspy J, Dodwell D, Parker J, Mayordomo J, Tres A, Murray JL, Ibrahim NK (2011) Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 16(8):1092–1100PubMedCrossRefGoogle Scholar
  29. 29.
    Hulíková K, Grobárová V, Křivohlavá R, Fišerová A (2010) Antitumor activity of N-acetyl-D-glucosamine-substituted glycoconjugates and combined therapy with keyhole limpet hemocyanin in B16F10 mouse melanoma model. Folia Microbiol (Praha) 55(5):528–532CrossRefGoogle Scholar
  30. 30.
    Dolashka P, Velkova L, Shishkov S, Kostova K, Dolashki A, Dimitrov I, Atanasov B, Devreese B, Voelter W, Van Beeumen J (2010) Glycan structures and antiviral effect of the structural subunit RvH2 of Rapana hemocyanin. J Carbohydr Res 345:2361–2367CrossRefGoogle Scholar
  31. 31.
    Dolashka-Angelova P, Stevanovic S, Dolashki A, Devreese B, Tzvetkova B, Voelter W, Beeumen JV, Salvato B (2007) A challenging insight on the structural unit 1 of molluscan Rapana venosa hemocyanin. Arch Biochem Biophys 49:50–58CrossRefGoogle Scholar
  32. 32.
    Dolashka P, Genov N, Pervanova K, Voelter W, Geiger M, Stoeva S (1996) Rapana thomasiana grosse (gastropoda) haemocyanin: spectroscopic studies of the structure in solution and the conformational stability of the native protein and its structural subunits. Biochem J 315:139–144PubMedGoogle Scholar
  33. 33.
    Veklkova L, Dimitrov I, Schwarz H, Stevanovic S, Voelter W, Salvato B, Dolashka-Angelova P (2010) Structure of hemocyanin from garden snail Helix lucorum. Comp Biochem Physiol Part B: Biochem Mol Biol 157(1):16–25CrossRefGoogle Scholar
  34. 34.
    Arimori S, Ward CJ, James TD (2002) A d-glucose selective fluorescent assay. Tetrahedron Lett 43:303–305CrossRefGoogle Scholar
  35. 35.
    Wiskur SL, Ait-Haddou H, Lavigne JJ, Ansyln EV (2001) Teaching old indicators new tricks. Acc Chem Res 34:963–972PubMedCrossRefGoogle Scholar
  36. 36.
    Arimori S, Murakami H, Takeuchi M, Shinkai S (1995) Sugar-controlled association and photoinduced electron-transfer in boronic-acid-appended porphyrins. J Chem Soc,Chem Commun 961–962Google Scholar
  37. 37.
    DiCesare N, Pinto MR, Schanze KS, Lakowicz JR (2002) Saccharide detection based on the amplified fluorescence quenching of a water-soluble poly(phenylene ethynylene) by a boronic acid functionalized benzyl viologen derivative. Langmuir 18:7785–7787CrossRefGoogle Scholar
  38. 38.
    Cappuccio FE, Suri JT, Cordes DB, Wessling RA, Singaram B (2004) Evaluation of pyranine derivatives in boronic acid based saccharide sensing: significance of charge interaction between dye and quencher in solution and hydrogel. J Fluoresc 14:521–533PubMedCrossRefGoogle Scholar
  39. 39.
    Harris JR, Markl J (2000) Keyhole limpet hemocyanin: molecular structure of a potent marine immunoactivator. Rev Eur Urol 37:24–33CrossRefGoogle Scholar
  40. 40.
    GriYoen M, Borghi M, Schrier PI, Osanto S, Schadendorf D (2004) Analysis of T-cell responses in metastatic melanoma patients vaccinated with dendritic cells pulsed with tumor lysates. Cancer Immunol Immunother 53(8):715–722Google Scholar
  41. 41.
    Wang L, Sang YX, Wang XH (2011) Enzyme-linked immunosorbent assay for okadaic acid: investigation of analytical conditions and sample matrix on assay performance. J AOAC Int 94(5):1531–1539PubMedCrossRefGoogle Scholar
  42. 42.
    Coates CJ, Kelly SM, Nairn J (2011) Possible role of phosphatidylserine-hemocyanin interaction in the innate immune response of Limulus polyphemus. Dev Comp Immunol 5(2):155–163CrossRefGoogle Scholar
  43. 43.
    Jaenicke E, Fraune S, May S, Irmak P, Augustin R, Meesters C, Decker H, Zimmer M (2009) Is activated hemocyanin instead of phenoloxidase involved in immune response in woodlice. Dev Comp Immunol 33(10):1055–1063PubMedCrossRefGoogle Scholar
  44. 44.
    Geyer H, Wuhrer M, Resemann A, Geyer R (2005) Identification and characterization of keyhole limpet hemocyanin N-Glycans mediating cross-reactivity with Schistosoma mansoni. J Biol Chem 280(49):40731–40748PubMedCrossRefGoogle Scholar
  45. 45.
    Tang BP, Wang YQ, Zhang DZ (2009) Studies on the interaction between benzidine and hemocyanin from Chinese mitten crab Eriocheir japonica sinensis (Decapoda, Grapsidae). Spectrochim Acta A Mol Biomol Spectrosc 73(4):676–681PubMedCrossRefGoogle Scholar
  46. 46.
    Kostadinova E, Dolashka P, Kaloyanova S, Velkova L, Deligeorgiev T, Voelter W, Petkov I (2012) Development of a new method for analysis of different oligosaccharide structures. J Fluoresc 22(6):1609–1615PubMedCrossRefGoogle Scholar
  47. 47.
    Cuff ME, Miller KI, Van Holde KE, Hendrickson WA (1998) Crystal structure of a functional unit from Octopus hemocyanin. J Mol Biol 278(4):855–870PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Elena Kostadinova
    • 1
  • Pavlina Dolashka
    • 1
  • Lyudmila Velkova
    • 1
  • Aleksandar Dolashki
    • 1
  • Stefan Stevanovic
    • 1
    • 3
  • Wolfgang Voelter
    • 2
  1. 1.Institute of Organic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Interfacultary Institute of BiochemistryUniversity of TubingenTubingenGermany
  3. 3.Institute for Cell Biology, Department of ImmunologyUniversity of TübingenTübingenGermany

Personalised recommendations