Journal of Fluorescence

, Volume 23, Issue 3, pp 399–406 | Cite as

Synthesis, Structural, Thermal and Photo-Physical Properties of Triazine Based NLO Material

  • M. Shyamala Devi
  • P. Tharmaraj
  • C. D. Sheela
  • R. Ebenezer


Three novel triazine based organic chromophores with D-π-A (Donor-π system- Acceptor) push-pull type have been synthesized from 2, 4-diamino-6-phenyl-1,3,5-triazine as a starting material. Structures of all the three compounds have been confirmed by UV-Visible absorption, FT-IR, NMR and Mass spectral techniques. Their photo physical and thermal properties have been investigated. Among the three compounds, 6-phenyl-2,4-((4-amino-1,5-dimethyl-2-phenyl pyrazol-3-ylidene)(4-nitro benzylidene))-diamino-1, 3, 5-triazine (NDP) showed positive solvatochromism compared to the other two compounds. The absorption in the UV region of these three compounds were found to be less dependent on solvent polarities, whereas the red shifted fluorescence was strongly dependent on solvent polarities. The TGA data indicates that all the three compounds are stable up to 160 °C. Measurement of non linear optical properties showed that there is an increased second harmonic generation (SHG) efficiency with respect to urea indicating the existence of high molecular nonlinearity in NDP.


Fluorescence Solvatochromism Intra molecular charge transfer SHG 



Authors thank the Management of Thiagarajar College, Madurai and one of the authors (PT) and thank the Defence Research and Development Organization (DRDO), New Delhi for financial support, SAIF, IIT Chennai, and CECRI, Karaikudi for providing analytical facilities.

Supplementary material

10895_2012_1154_MOESM1_ESM.doc (160 kb)
Fig. 1 1H Nmr spectrum of TDP (DOC 159 kb)
10895_2012_1154_MOESM2_ESM.doc (262 kb)
Fig. 2 13C Nmr spectrum of TDP (DOC 261 kb)
10895_2012_1154_MOESM3_ESM.doc (106 kb)
Fig. 3 Mass spectrum of TDP m/z = 466.17 (DOC 106 kb)
10895_2012_1154_MOESM4_ESM.doc (244 kb)
Fig. 4 1H Nmr spectrum of NDP (DOC 244 kb)
10895_2012_1154_MOESM5_ESM.doc (89 kb)
Fig. 5 13C Nmr spectrum of NDP (DOC 89 kb)
10895_2012_1154_MOESM6_ESM.doc (114 kb)
Fig. 6 Mass spectrum of NDP m/z = 505.2 (DOC 114 kb)
10895_2012_1154_MOESM7_ESM.doc (108 kb)
Fig. 7 1H Nmr spectrum of IDM (DOC 107 kb)
10895_2012_1154_MOESM8_ESM.doc (96 kb)
Fig. 8 13C Nmr spectrum of IDM (DOC 96 kb)
10895_2012_1154_MOESM9_ESM.doc (102 kb)
Fig. 9 Mass spectrum of IDM m/z = 430.19 (DOC 101 kb)


  1. 1.
    Aravindan A, Srinivasan P, Vijayan N, Gopalakrishnan R, Ramasamy P (2007) Investigations on the growth, optical behavior and factor group of an NLO crystal: L-alaline alaninium nitrate. Cryst Res Technol 42:1097–1103. doi: 10.1002/crat.200710954 CrossRefGoogle Scholar
  2. 2.
    Shi Y, Zhang C, Zhang H, Bechtel JH, Dalton LR, Robinson H, Steier WH (2000) Low (sub-1-volt) halwave voltge polymeric electro-optic modulators achieved by controlling chromophore shape. Science 288:119–122PubMedCrossRefGoogle Scholar
  3. 3.
    Xiangping L, Chon JW, Evans RA, Min G (2009) Quantum-rod dispersed photopolymers for multi-dimensional photonic applications. Opt Express 17:2954–2961CrossRefGoogle Scholar
  4. 4.
    Kelemen L, Valkai S, Ormos P (2007) Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. Opt Express 15:14488–14497PubMedCrossRefGoogle Scholar
  5. 5.
    Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, McCord-Maughon D, Quin J, Rockel H, Rumi M, Wu XL, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54CrossRefGoogle Scholar
  6. 6.
    Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698PubMedCrossRefGoogle Scholar
  7. 7.
    Theer P, Denk W (2006) On the fundamental imaging-depth limit in two-photon microscopy. JOSA A 23:3139–3149PubMedCrossRefGoogle Scholar
  8. 8.
    Moreaux L, Sandre O, Charpak S, Blanchard-Desce M, Mertz J (2001) Coherent scattering in multi-harmonic light microscopy. Biophys J 80:1568–1574PubMedCrossRefGoogle Scholar
  9. 9.
    Zyss J, Isabelle L, Sergei V, Vladimir C, Shaul M, Bartholomew GP, Bazan GC (2000) Through-space charge transfer and nonlinear optical properties of substituted Paracyclophane. J Am Chem Soc 122:11956–11962CrossRefGoogle Scholar
  10. 10.
    Patil PS, Dharmaprakash SM, Ramakrishna K, Fun H-K, Sai Santhosh Kumar R, Narayana Rao D (2007) Second harmonic generation and crystal growth of new chalcone derivatives. Journal of crystal growth 303:520–524CrossRefGoogle Scholar
  11. 11.
    Jin X, Xia L, Llu C, Sun P, Guohua H, Cui Y (2005) Synthesis and two-photon induced fluorescence spectroscopy of a novel nonlinear optical chromophore. Chin Opt Lett 3:550–552Google Scholar
  12. 12.
    Shirota Y (2000) Organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25. doi: 10.1039/A908130E CrossRefGoogle Scholar
  13. 13.
    Sonawane Y, Phadtare S, Borse B, Jagtap A, Shankarling G (2010) Synthesis of diphenylamine-based novel fluorescent styryl compounds by knoevenagel condensation using a conventional method, biocatalyst and deep eutectic solvent. Org Lett 12:1256–1259CrossRefGoogle Scholar
  14. 14.
    Gupta V, Padalkar V, Phtangare K, Patil V, Umape P, Sekar N (2011) The synthesis and photo-physical properties of extended styryl fluorescent derivatives of N-ethyl carbazole. Dyes and Pigment 88:378–384CrossRefGoogle Scholar
  15. 15.
    Vikas S, Padalkar SN (2011) Synthesis and characterization of novel 4-(1-(4-(4-(4-aminophenyl)-1H-pyrazol-1yl)-6-(4-(diethylamino)phenyl)-1,3,5-triazin-2-yl)-1H-pyrazol-4-yl)benzenamine fluorescent dye for protein binding. Current Chemistry Letters 1:1–12Google Scholar
  16. 16.
    Punke M, Valouch S, Siegfried W, Kettlitz MG, Lemmer U (2008) Optical data link employing organic light-emitting diodes and organic photodiodes as optoelectronic components. J Light Technol 26:816–823CrossRefGoogle Scholar
  17. 17.
    Balaganesan B, Wen S, Chen C (2003) Synthetic study of tetramethyl julolidine-A key intermediate toward the synthesis of the red dopant DCJTB for OLED applications. Tetrahedron Lett 44:145–147CrossRefGoogle Scholar
  18. 18.
    Paldalkar VS, Patil VS, Sekar N (2011) Synthesis and photo-physical properties of fluorescent 1,3,5-triazine styryl derivatives. Chemistry Central Journal 5:77CrossRefGoogle Scholar
  19. 19.
    Guggenheim S, Koster Vn Groos AF (2001) Baseline studies of the clay minerals society source clays: thermal analysis. Clays Clay Miner 49:433–443CrossRefGoogle Scholar
  20. 20.
    Mohamed GG, Omar M, Hindy AM (2006) Metal complexes of Schiff bases. Turk J Chem 30:361–382Google Scholar
  21. 21.
    Spinu C, Pleniceanu M, Tigae (2008) New biologically active Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of N-(2-thienylmethylene)methanamine. J Serb Chem Soc 73:415–421CrossRefGoogle Scholar
  22. 22.
    Spinu C, Kriza A (2000) Co(II), Ni(II) and Cu(II) complexes of bidendate Schiff bases. Acta Chim Slov 47:179–185Google Scholar
  23. 23.
    Spinu C, Pleniceanu M, Tigae C (2008) Biologically active transition metal chelates with a 2-Thiophenecarboxaldehyde-derived schiff base: synthesis, characterization and antibacterial properties. Turk J Chem 32:487–493Google Scholar
  24. 24.
    Dolaz M, Tumer M, Golcu A (2001) Synthesis and Spectrophotometric investigation of a new vic-Dioxime ligand and its transition metal complexes. Turk J Chem 25:491–500Google Scholar
  25. 25.
    Mohareb RM, Mohamed AA (2010) The reaction of Cyanoacetylhydrazine with ω-Bromo(4-methyl)acetophenone: synthesis of heterocyclic derivatives with antitumor activity. Molecules 15:3602–3617PubMedCrossRefGoogle Scholar
  26. 26.
    Sari N (2003) Antibacterial activities of some new amino acid-schiff bases. G U Journal of Science 16:283–288Google Scholar
  27. 27.
    Kurtz SK, Perry TT (1968) A powder technique for the evaluation of nonlinear optical materials. J Appl Phys 39:3798CrossRefGoogle Scholar
  28. 28.
    Katan C, Tretiak S, Martinus HV, Werts AJ, Bain RJ, Marsh NL, Nicolaou N, Badaeva E, Mongin O, Blanchard-Desce M (2007) Two-photon transitions in Quadrupolar and branched Chromophores: experiment and theory. J Phys Chem B 111:9468–9483PubMedCrossRefGoogle Scholar
  29. 29.
    Gong Y, Guo X, Wang S, Hongmei S, Xia A (2007) Photophysical properties of photoactive molecules with conjugated push-pull structures. J Phys Chem A 111:5806–5812PubMedCrossRefGoogle Scholar
  30. 30.
    Laage D, Thompson WH, Blanchard-Desce M, Hynes JT (2003) Charged push-pull polyenes in solution: anomalous solvatochromism and nonlinear optical properties. J Phys Chem A 107:6032–6046CrossRefGoogle Scholar
  31. 31.
    Chattopadhyay N, Mallick A, Sengupta S (2006) Photophysical studies of 7-hydroxy-4-methyl-8-(4-methylpiperazin-1-yl)methylcoumarin: a new fluorescent chemosensor for zinc and nickel ions in water. Journal of Photochemistry and Photobiology A Chemistry 177:55–60CrossRefGoogle Scholar
  32. 32.
    Yue Zhi CUI, Qi FANG, Hong LEI, Gang XUE, Wen Tao YU (2003) The structure and non linear optical properties of octupolar compound: 2,4,6-tristyryl-s-triazine. Chin Chem Lett 14:856–859Google Scholar
  33. 33.
    D’silva ED, Narayan Rao D, Philip R, Ray J, Butcher R, Dharmaprakash SM (2011) Synthesis, growth and characterization of novel second harmonic nonlinear chalcone crystal. Journal of Physics and Chemistry of Solids 72:824–830CrossRefGoogle Scholar
  34. 34.
    Chaudhari JA, Patel RP (2010) Synthesis, characterization, composites fabrication and antimicrobial activity of piperazinylo bisarylhydrazino-s-triazine derivatives. International Journal of Chem Tech Research 2:1949–1954Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. Shyamala Devi
    • 1
  • P. Tharmaraj
    • 1
  • C. D. Sheela
    • 2
  • R. Ebenezer
    • 1
  1. 1.Department of ChemistryThiagarajar CollegeMaduraiIndia
  2. 2.Department of ChemistryThe American CollegeMaduraiIndia

Personalised recommendations