Journal of Fluorescence

, Volume 23, Issue 1, pp 103–113 | Cite as

Effects of Ionic Liquids on Fluorescence Characteristics of 17α- and 17β-estradiol

  • Huili Wang
  • Ailian Duan
  • Jingwen Mao
  • Baoguang Che
  • Wenwei Wang
  • Meiping Ma
  • Xuedong Wang


Herein, we report the effects of six different room temperature ionic liquids (RTILs) on fluorescence spectra of 17α-estradiol (EE1) and 17β-estradiol (E2). The selected RTILs belonged to the compound classes of 1-alkyl-3-methylimidazolium tetrafluoroborate ([CnMIM]BF4) and 1-alkyl-3-methyl imidazolium hexafluorophosphate ([CnMIM]PF6). RTILs had a gradual quenching effect on fluorescence intensity (FI) of EE1 and E2, and the quenching process followed the well-known Stern-Volmer theory. The quenching mechanism of EE1 and E2 by RTILs was demonstrated to be dynamic quenching. Additionally, the overall quenching efficiency by [CnMIM]BF4 was higher than [CnMIM]PF6. The increased carbon chain length of RTILs did not lead to obvious differences in FI for EE1 and E2. The quenching efficiency showed irregular trend at three different temperatures (25, 35 and 45 °C). RTILs such as [C4MIM]PF6 had the different fluorescent effects on organic chemicals with different fluorophores. The enhancing effects of [C4MIM]PF6 were observed on strong fluorescence chemicals (dansyl chloride, rhrodamine B, 1,10-phenanthroline, norfloxacin), while quenching effect on weak fluorescence chemicals (EE1 and E2). In theory, these results provide a theoretical foundation for deep insight into their interaction mechanism between RTILs and estradiol.


Room temperature ionic liquids Fluorescence intensity 17α-Estradiol 17 β-Estradiol Quenching mechanism 



This work was jointly funded by National Natural Science Foundation of China (21077079), International Cooperation Project of Wenzhou City (H20100053, H20100054) and Public Benefit Project of Zhejiang Province (2011C23114, 2011C37006, 2011B25).


  1. 1.
    Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Weinheim, VCH-WileyCrossRefGoogle Scholar
  2. 2.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083PubMedCrossRefGoogle Scholar
  3. 3.
    Haumann M, Riisager A (2008) Hydroformylation in room temperature ionic liquids (RIILs): catalyst and process developments. Chem Rev 108:1474–1497PubMedCrossRefGoogle Scholar
  4. 4.
    Martins MAP, Frizzo CP, Moreira DN, Zantta N, Bonacorso HG (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108:2015–2050PubMedCrossRefGoogle Scholar
  5. 5.
    Berthod A, Ruiz-Angel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng DH, Chen XW, Shu Y, Wang JH (2008) Extraction of cytochrome c by ionic liquid 1-butyl-3-trimethyl silylimidazoliumhexafluorophosphate. Chin J Anal Chem 36:1187–1190CrossRefGoogle Scholar
  7. 7.
    Yanes EG, Gratz SR, Baldwin MJ, Robison SE, Stalcup AM (2001) Capillary electrophoretic application of 1-alky1-3-methylimidazolium-based ionic liquids. Anal Chem 73:3838–3844PubMedCrossRefGoogle Scholar
  8. 8.
    Deng X (2008) The preliminary study on the application of ionic liquids in fluorescent analyses Master’s thesis. Southwest University of China, ChongqingGoogle Scholar
  9. 9.
    Fletcher KA, Pandey S, Storey IK, Hendricks AE, Pandey S (2002) Selective fluorescence quenching of polycyclic aromatic hydrocarbons by nitromethane within room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Anal Chim Acta 453:89–96CrossRefGoogle Scholar
  10. 10.
    Chai WJ, Li WX, Sun XJ, Ren T, Shi XY (2011) Fluorescence enhancement of lanthanide(III) perchlorate by 1,10-phenanthroline in bis(benzoylmethyl) sulfoxide complexes and luminescence mechanism. J Lumin 131:225–230CrossRefGoogle Scholar
  11. 11.
    Calimag-Williams K, Goicoechea HC, Campiglia AD (2011) Room-temperature fluorescence spectroscopy of monohydroxy metabolites of polycyclic aromatic hydrocarbons on octadecyl extraction membranes. Talanta 85:1805–1811PubMedCrossRefGoogle Scholar
  12. 12.
    Matte HSSR, Subrahmanyam KS, Rao KV (2011) Quenching of fluorescence of aromatic molecules by graphene due to electron transfer. Chem Phys Lett 506:260–264CrossRefGoogle Scholar
  13. 13.
    Armstrong DW, He LF, Liu YS (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 71:3873–3876PubMedCrossRefGoogle Scholar
  14. 14.
    Devi VS, Maji S, Viswanatha KS (2011) Novel room temperature ionic liquid for fluorescence enhancement of Eu3+ and Tb3+. J Lumin 131:739–748CrossRefGoogle Scholar
  15. 15.
    Wu H, Zhang LB, Du LM (2011) Ionic liquid sensitized fluorescence determination of four isoquinoline alkaloids. Talanta 85:787–793PubMedCrossRefGoogle Scholar
  16. 16.
    Wang XD, Li YY, Du XW, Lin ZK, Huang CJ (2011) Effects of room temperature ionic liquids on fluorescence characteristics of 17β-estradiol and its derivative. J Fluoresc 21:1643–1648PubMedCrossRefGoogle Scholar
  17. 17.
    Bjerregaard LB, Korsgaard B, Bjerregaard P (2006) Intersex in wild roach (Rutilus rutilus) from Danish sewage effluent-receiving streams. Ecotoxicol Environ Safety 64:321–327PubMedCrossRefGoogle Scholar
  18. 18.
    Hu JY, Aizawa T (2003) Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals. Water Res 37:1213–1222PubMedCrossRefGoogle Scholar
  19. 19.
    Baronti C, Curini R, Ascenzo GD, Corcia AD, Gentili A, Samperi R (2000) Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol 34:5059–5065CrossRefGoogle Scholar
  20. 20.
    Das SK, Sarkar M (2012) Steady-state and time-resolved fluorescence behavior of coumarin-153 in a hydrophobic ionic liquid and ionic liquid-toluene mixture. J Mol Liq 165:38–43CrossRefGoogle Scholar
  21. 21.
    Mandal PK, Paul A, Samanta A (2006) Excitation wavelength dependent fluorescence behavior of the room temperature ionic liquids and dissolved dipolar solutes. J Photochem Photobiol A 182:113–120CrossRefGoogle Scholar
  22. 22.
    Yan H, Wu J, Dai G, Zhong AG, Chen H, Yang JG, Han D (2012) Interaction mechanisms of ionic liquids [Cnmim]Br (n = 4, 6, 8, 10) with bovine serum albumin. J Lumin 132:622–628CrossRefGoogle Scholar
  23. 23.
    Sarkar S, Pramanik RP, Ghatak C, Rao VG, Sarkar N (2011) Photoinduced intermolecular electron transfer in a room temperature imidazolium ionic liquid: an excitation wavelength dependence study. Chem Phys Lett 506:211–216CrossRefGoogle Scholar
  24. 24.
    Geng F, Zheng L, Yu L, Li G, Tung C (2010) Interaction of bovine serum albumin and long-chain imidazolium ionic liquid measured by fluorescence spectra and surface tension. Process Biochem 45:306–311CrossRefGoogle Scholar
  25. 25.
    Zou YJ, Wang HL, Wang WW, Ma MP, Wang P, Wang CJ, Wang XD (2012) The effect of imidazolium room temperature ionic liquids on the fluorescent properties of Norfloxacin. Luminescence. doi: 10.1002/bio.1382
  26. 26.
    Hyun BR, Dzyuba SV, Bartsch RA, Quitevis EL (2002) Intermolecular dynamics of room-temperature ionic liquids: femtosecond optical kerr effect measurements on 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imides. J Phys Chem A 106:7579–7585CrossRefGoogle Scholar
  27. 27.
    Baker SN, Baker GA, Kane MA, Bright FV (2001) The cybotactic region surrounding fluorescent probes dissolved in 1-Butyl-3-methylimidazolium hexafluorophosphate: effects of temperature and added carbon dioxide. J Phys Chem A 105:9663–9669Google Scholar
  28. 28.
    Gao L, Guo B, Duan EH, Ren AL (2011) The viscosities of [bmim][BF4] and [bmim][PF6] ionic liquids and their binary systems with N-Dimethylformamide. Hebei Chem Ind 34:40–44Google Scholar
  29. 29.
    Xu JG, Wang ZB (2006) Fluorimetry, revised 3rd edn. Science and Technology Press, ChinaGoogle Scholar
  30. 30.
    Naik AB, Naik LR, Kadadevarmath JS, Pal H, Rao VJ (2010) Fluorescence quenching of anthrylvinyl acetate by carbon tetrachloride. J Photochem Photobiol A 214:145–151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Huili Wang
    • 1
  • Ailian Duan
    • 2
  • Jingwen Mao
    • 2
  • Baoguang Che
    • 2
  • Wenwei Wang
    • 1
  • Meiping Ma
    • 1
  • Xuedong Wang
    • 2
  1. 1.School of Life SciencesWenzhou Medical CollegeWenzhouChina
  2. 2.Department of Environmental SciencesWenzhou Medical CollegeWenzhouChina

Personalised recommendations