Advertisement

Journal of Fluorescence

, Volume 22, Issue 5, pp 1271–1279 | Cite as

Synthesis, Thermal and Spectroscopic Characterization of Caq2 (Calcium 8-Hydroxyquinoline) Organic Phosphor

  • I. M. Nagpure
  • M. M. Duvenhage
  • Shreyas S. Pitale
  • O. M. Ntwaeaborwa
  • J. J. Terblans
  • H. C. Swart
ORIGINAL PAPER

Abstract

Bluish-green photoluminescence from calcium 8-hydroxyquinolate (Caq2) powder, synthesized by a co-precipitation route, and a blended Caq2:PMMA thin film is reported. The film was obtained by mixing the Caq2 powder with PMMA (Polymethylmethacrylate) in a chloroform solution. X-ray diffraction analyses confirm the formation of the Caq2 powder and thin film. Further structural elucidation was carried out using Fourier transform infrared spectroscopy (FTIR) in which the stretching frequencies of the Caq2 bonds were determined. Bluish-green photoluminescence with a maximum at 480 nm was observed from the powder and the emission was red-shift by 10 nm in the case of the thin film. The UV-vis absorption bands were split and shifted due to different orientations of the Caq2 molecules in both the powder and thin film. It was confirmed by thermogravimetric (TGA) and differential thermal analysis (DTA) that the Caq2 powder was stable up to ≈ 380 °C. Atomic force microscopy images showed the continuous distribution of the Caq2 atoms in the PMMA thin film. X-ray photoelectron spectroscopy data was used to estimate the binding energies of the chemical bonding in the Caq2 powder complex. The optical properties of the Caq2 powder and thin film were evaluated for possible applicable in organic light emitting devices.

Keywords

Caq2 PL XRD FTIR AFM OLED 

Notes

Acknowledgement

Authors are thankful to the University of the Free State (UFS) cluster program and the South African National Research Foundation (NRF) for the financial support.

References

  1. 1.
    Vivas-Reyes R, Nunez-Zarur F, Martınez E (2008) Electronic structure and reactivity analysis for a set of Zn-chelates with substituted 8-hydroxyquinoline ligands and their application in OLED. Org Electro 9:625–634CrossRefGoogle Scholar
  2. 2.
    Manju R, Blanton Thomas N, Tang Ching W, Lenhart William C, Switalski Steven C, Giesen David J, Antalek Brian J, Pawlik Thomas D, Kondakov Denis Y, Nicholas Z, Young Ralph H (2009) Structural, thermal, and spectral characterization of the different crystalline forms of Alq3, tris(quinolin-8-olato) aluminum(III), an electroluminescent material in OLED technology. Polyhedron 28:835–843CrossRefGoogle Scholar
  3. 3.
    Mei Q, Du N, Lu M (2006) Synthesis and characterization of high molecular weight metaloquinolate containing polymers. J Appl Poly Sci 99:1945–1952CrossRefGoogle Scholar
  4. 4.
    Du N, Tian R, Peng J, Lu M (2005) Synthesis and photo-physical characterization of the free-radical copolymerization of metalo-quinolate-pendant monomers with methyl methacrylate. J Poly Sci: Part A: Poly Chem 43:397–406CrossRefGoogle Scholar
  5. 5.
    Stefan B, Wolfgang B (2002) Dispersive electron transport in tris(8-Hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy. Phys Rev Lett 89:286601CrossRefGoogle Scholar
  6. 6.
    Duvenhage MM, Ntwaeaborwa OM, Swart HC (2012) UV exposure and photon degradation of Alq3 powders. Physica B: Phys of Conden Matt 407(10):1521–1524Google Scholar
  7. 7.
    Sapochak LS, Benincasa FE, Schofield RS, Baker JL, Riccio KKC, Fogarty D, Kohlmann H, Ferris KF, Burrows PE (2002) Electroluminescent zinc(II) bis(8-hydroxyquinoline): Structural effects on electronic states and device performance. J Am Chem Soc 124:6119–6125PubMedCrossRefGoogle Scholar
  8. 8.
    Hopkins TA, Meerholz K, Shaheen S, Anderson ML, Schmidt A, Kippelen B, Padias AB, Hall JHK, Peyghambarian N, Armstrong NR (1996) Substituted aluminum and zinc quinolate with blue-shifted absorbance/luminescence bands: synthesis and spectroscopic, photoluminescence, and electroluminescence characterization. Chem Mater 8:344–351CrossRefGoogle Scholar
  9. 9.
    European Patent Specification, Bulletin 2004/12 EP 1144543 B1Google Scholar
  10. 10.
    Cheng CH, Jianmin S (1998) Metal chelates as emitting materials for organic electroluminescence. Coord Chem Rev 171:161–174CrossRefGoogle Scholar
  11. 11.
    El-Nahass MM, Farid AM, Atta AA (2010) Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films. J Alloys and Compds 507:112–119CrossRefGoogle Scholar
  12. 12.
    Bing-she Xu, Hao Yu-ying, Wang H, Zhou He-feng, Liu Xu-guang, Chen Ming-wei (2005) The effects of crystal structure on optical absorption/ photoluminescence of bis (8-hydroxyquinoline) zinc. Solid State Commun 136:318–322CrossRefGoogle Scholar
  13. 13.
    Kai Y, Moraita M, Yasuka N, Kasai N (1985) The crystal and molecular structure of anhydrous zinc 8-quinolinolate complex, (Zn(C9H6NO)2)4. Bull Chem Soc Jpn 58:1631–1635CrossRefGoogle Scholar
  14. 14.
    Nithima K, Makoto O (2010) Formation of mono(8-hydroxyquinoline) lithium(I) complex in smectites by solid–solid reactions. J Phys and Chem Solids 71:1644–1650CrossRefGoogle Scholar
  15. 15.
    Crespi MS, Ribeiro CA, Greenhalf VCM, Zorel HE Jr (1999) Preparation and thermal decomposition of copper(II), zinc(II) and cadmium(II) chelates with 8-hydroxy quinoline. Quimica Nova 22:41–46CrossRefGoogle Scholar
  16. 16.
    Juiz SA, Leles MIG, Caires ACF, Boralle N, Ionashiro M (1997) Thermal decomposition of the magnesium, zinc, lead and niobium chelates derived from 8-Quinolinol. J Therm Anal 50:625–632CrossRefGoogle Scholar
  17. 17.
    Pastre IA, Oliveria IDN, Moitinho ABS, de Souza GR, Ionashiro EY, Fertonani FL (2004) Thermal behaviour of intercalated 8-hydroxyquinoline (oxine) in montmorillonite clay. J Therm Anal Calorim 75:661–669CrossRefGoogle Scholar
  18. 18.
    Marchon B, Bokobza L, Cote G (1986) Vibrational study of 8-quinolinol and 7-(4-ethyl-1-methyloctyl)-8-quinolinol (Kelex 100), two representative members of an important chelating agent family. Spectrochim Acta 42A:537–542Google Scholar
  19. 19.
    Magee RJ, Gordon L (1963) The infrared spectra of chelate compounds-I:a study of some metal chelate compounds of 8-hydroxyquinoline in the region 625 to 5000 cm−1. Talanta 10:851–859CrossRefGoogle Scholar
  20. 20.
    Atalay S, Adiguzel HI, Atalay F (2001) Infrared absorption study of Fe2O3–CaO–SiO2 glass ceramics. Mater Sci and Eng A 304:796–799CrossRefGoogle Scholar
  21. 21.
    Tackett JE, Sawyer DT (1964) Properties and infrared spectra in the potassium bromide region of 8-quinolinol and its metal chelates. Inorg Chem 3:692–696CrossRefGoogle Scholar
  22. 22.
    Bingshe X, Hua W, Yuying H, Zhixiang G, Hefeng Z (2007) Preparation and performance of a new type of blue light-emitting material δ-Alq3. J Lumin 122:663–666CrossRefGoogle Scholar
  23. 23.
    Ayako T, Hirose H (1998) Wavelength effect on the accelerated photo-degradation of polymethylmethacrylate. Poly Degrad and Stab 61:361–364CrossRefGoogle Scholar
  24. 24.
    Garbuzov DZ, Bulovi V, Burrows PE, Forrest SR (1996) Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films. Chem Phys Lett 249:433–437CrossRefGoogle Scholar
  25. 25.
    Zhong Chaofan Wu, Qian GR, Hailiang Z (2008) Synthesis and luminescence properties of polymeric complexes of Cu(II), Zn(II) and Al(III) with functionalized polybenzimidazole containing 8-hydroxyquinoline side group. Opt Mater 30:870–875CrossRefGoogle Scholar
  26. 26.
    Wang X-Y, Weck M (2005) Poly(styrene)-supported Alq3 and BPh2q. Macromolecules 38:7219–7224CrossRefGoogle Scholar
  27. 27.
    Mahakhode JG, Bahirwar BM, Dhoble SJ, Moharil SV (2006) Tunable Photoluminescence from tris(8-Hydroxyquinoline) Aluminum (Alq3). Proc of ASID, New Delhi 237–239Google Scholar
  28. 28.
    MultiPakTM Version 9 (2006–2010) Physical Electronics, Inc. Chanhassen, USAGoogle Scholar
  29. 29.
    Selvam P, Viswanathan B, Srinivasan V (1989) XPS studies of the surface properties of CaNi5. J Electron Spectrosc Relat Phenom 49(2):203–211CrossRefGoogle Scholar
  30. 30.
    Demri B, Muster D (1995) XPS study of some calcium compounds. J Mater Proces Techno 55:311–314CrossRefGoogle Scholar
  31. 31.
    Voigts F, Bebensee F, Dahle S, Volgmann K, Maus-Friedrichs W (2009) The adsorption of CO2 and CO on Ca and CaO films studied with MIES, UPS and XPS. Surf Sci 603:40–49CrossRefGoogle Scholar
  32. 32.
    Jean-Charles D, Danielle G, Philippe V, Alain L (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • I. M. Nagpure
    • 1
  • M. M. Duvenhage
    • 1
  • Shreyas S. Pitale
    • 1
  • O. M. Ntwaeaborwa
    • 1
  • J. J. Terblans
    • 1
  • H. C. Swart
    • 1
  1. 1.Department of PhysicsUniversity of the Free StateBloemfonteinRepublic of South Africa

Personalised recommendations