Advertisement

Journal of Fluorescence

, Volume 22, Issue 5, pp 1231–1236 | Cite as

Fluoride-Triggered ESPT in the Binding with Sal(oph)en

  • Kai Liu
  • Jianzhong Huo
  • Bolin Zhu
  • Ran Huo
ORIGINAL PAPER

Abstract

In this paper, anion binding and sensing affinity of the simple and easy-to-make salen, a typical class of ligand used comprehensively in metal coordination, was investigated. Results indicated that salophen was both a colorimetric and fluorescent selective chemosensor for fluoride ion, which operated by the anion-induced conformational changes and subsequently excited-state intramolecular proton transfer (ESPT) process. The F--induced quick response, as well as noticeable optical changes, suggested that anion-sensing mechanism maybe help to design and to synthesize the new preferential selective probes for F-.

Keywords

ESPT Deprotonation Anion sensors Supramolecular chemistry Fluorescent 

Notes

Acknowledgement

We are grateful to National Natural Science Foundation of China (No. 21002069) and Doctoral Science Foundation (No. 52LX26).

Supplementary material

10895_2012_1063_MOESM1_ESM.docx (533 kb)
ESM 1 (DOCX 533 kb)

References

  1. 1.
    Yoon TP, Jacobsen EN (2003) Privileged chiral catalysts. Science 299:1691–1693. doi: 10.1126/science.1083622 PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J Am Chem Soc 112:2801–2803. doi: 10.1021/ja00163a052 CrossRefGoogle Scholar
  3. 3.
    Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T (1990) Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron Letters 31:7345–7348. doi: 10.1016/s0040-4039(00)88562-7 CrossRefGoogle Scholar
  4. 4.
    Cozzi PG (2004) Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421. doi: 10.1039/b307853c PubMedCrossRefGoogle Scholar
  5. 5.
    Haak RM, Wezenberg SJ, Kleij AW (2010) Cooperative multimetallic catalysis using metallosalens. Chem Commun 2713–2723. doi: 10.1039/c001392g
  6. 6.
    Garnovskii AD, Nivorozhkin AL, Minkin VI (1993) Ligand environment and the structure of schiff base adducts and tetracoordinated metal-chelates. Coord Chem Rev 126:1–69. doi: 10.1016/0010-8545(93)85032-y CrossRefGoogle Scholar
  7. 7.
    Zhang C, Zhang X, Zhang X, Ou X, Zhang W, Jie J, Chang JC, Lee C-S, Lee S-T (2009) Facile one-step fabrication of ordered organic nanowire films. Adv Mater 21:4172–4175. doi: 10.1002/adma.200802793 CrossRefGoogle Scholar
  8. 8.
    Wezenberg SJ, Kleij AW (2008) Material applications for salen frameworks. Angew Chem Int Ed 47:2354–2364. doi: 10.1002/anie.200702468 CrossRefGoogle Scholar
  9. 9.
    Cho S-H, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006) A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem Commun 2563–2565. doi: 10.1039/b600408c
  10. 10.
    Routier SB, Bernier JL, Catteau MP, Bailly C (1997) Highly preferential cleavage of unpaired guanines in DNA by a functionalized salen-nickel complex. Bioorg Med Chem Lett 7:63–66. doi: 10.1016/S0960-894X(96)00569-0 CrossRefGoogle Scholar
  11. 11.
    Puglisi A, Tabbi G, Vecchio G (2004) Bioconjugates of cyclodextrins of manganese salen-type ligand with superoxide dismutase activity. J Inorg Biochem 98:969–976. doi: 10.1016/j.jinorgbio.2004.02.012 PubMedCrossRefGoogle Scholar
  12. 12.
    Doctrow SR, Huffman K, Marcus CB, Tocco G, Malfroy E, Adinolfi CA, Kruk H, Baker K, Lazarowych N, Mascarenhas J, Malfroy B (2002) Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure − activity relationship studies. J Med Chem 45:4549–4558. doi: 10.1021/jm020207y PubMedCrossRefGoogle Scholar
  13. 13.
    Dalla CA, De Bernardin P, Forte G, Yafteh MF (2010) Metal-salophen-based receptors for anions. Chem Soc Rev 39:3863–3874. doi: 10.1039/b926222a CrossRefGoogle Scholar
  14. 14.
    Ganjali MR, Norouzi P, Hatambeygi N, Salavati-Niasari M (2006) Anion recognition: fabrication of a highly selective and sensitive HPO42- PVC sensor based on a oxo-molybdenum methyl-salen. J Brazil Chem Soc 17:859–865CrossRefGoogle Scholar
  15. 15.
    Mao S, Liu K, Lu F, Du L (2010) Colorimetric sensors based on hydrogen-bond-induced π-delocalization and/or anion-triggered deprotonation. Mini-Rev Org Chem 7:221–229CrossRefGoogle Scholar
  16. 16.
    Arnendola V, Bonizzoni M, Esteban-Gomez D, Fabbrizzi L, Licchelli M, Sancenon F, Taglietti A (2006) Some guidelines for the design of anion receptors. Coord Chem Rev 250:1451–1470. doi: 10.1016/j.ccr.2006.01.006 CrossRefGoogle Scholar
  17. 17.
    Rudkevich DM, Stauthamer WPRV, Verboom W, Engbersen JFJ, Harkema S, Reinhoudt DN (1992) UO2-salenes: neutral receptors for anions with a high selectivity for dihydrogen phosphate. J Am Chem Soc 114:9671–9673. doi: 10.1021/ja00050a064 CrossRefGoogle Scholar
  18. 18.
    Vigato PA, Tamburini S (2004) The challenge of cyclic and acyclic schiff bases and related derivatives. Coord Chem Rev 248:1717–2128. doi: 10.1016/j.cct.2003.09.003 CrossRefGoogle Scholar
  19. 19.
    Cametti M, Dalla Cort A, Mandolini L, Nissinen M, Rissanen K (2008) Specific recognition of fluoride anion using a metallamacrocycle incorporating a uranyl-salen unit. New J Chem 32:1113–1116. doi: 10.1039/b806149a CrossRefGoogle Scholar
  20. 20.
    Bandoli G, Clemente DA, Croatto JU, Vidali M, Vigato PA (1971) Preparation and crystal and molecular structure of [NN′-o-phenylene-bis(salicylideneiminato)UO2(EtOH)]. J Chem Soc D 1330–1331. doi: 10.1039/C29710001330
  21. 21.
    Bandoli G, Clemente DA (1975) Preparation and crystal structure of aqua[bis(2-hydroxyphenylimino)-ethanato-OO′NN′-]dioxouranium. J Chem Soc, Dalton Trans: 612–615. doi: 10.1039/DT9750000612
  22. 22.
    Cort AD, Mandolini L, Pasquini C, Rissanen K, Russo L, Schiaffno L (2007) Zinc-salophen complexes as selective receptors for tertiary amines. New J Chem 31:1633–1638. doi: 10.1039/b700723j CrossRefGoogle Scholar
  23. 23.
    Germain ME, Vargo TR, McClure BA, Rack JJ, Patten PGV, Odoi M, Knapp MJ (2008) Quenching mechanism of Zn(Salicylaldimine) by nitroaromatics. Inorg Chem 47:6203–6211. doi: 10.1021/ic702469q PubMedCrossRefGoogle Scholar
  24. 24.
    Kleij AW, Kuil M, Tooke DM, Lutz M, Spek AL, Reek JNH (2005) Zn-II-salphen complexes as versatile building blocks for the construction of supramolecular box assemblies. Chem-Eur J 11:4743–4750. doi: 10.1002/chem.200500227 PubMedCrossRefGoogle Scholar
  25. 25.
    Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476. doi: 10.1021/cr010421e PubMedCrossRefGoogle Scholar
  26. 26.
    Luecke H, Quiocho FA (1990) High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347:402–406. doi: 10.1038/347402a0 PubMedCrossRefGoogle Scholar
  27. 27.
    Djedovic N, Ferdani R, Harder E, Pajewska J, Pajewski R, Weber ME, Schlesinger PH, Gokel GW (2005) The C- and N-terminal residues of synthetic heptapeptide ion channels influence transport efficacy through phospholipid bilayers. New J Chem 29:291–305. doi: 10.1039/b417091c PubMedCrossRefGoogle Scholar
  28. 28.
    Sivakumar R, Reena V, Ananthi N, Babu M, Anandan S, Velmathi S (2010) Colorimetric and fluorescence sensing of fluoride anions with potential salicylaldimine based schiff base receptors. Spectrochim Acta A Mol Biomol Spectrosc 75:1146–1151. doi: 10.1016/j.saa.2009.12.077 PubMedCrossRefGoogle Scholar
  29. 29.
    Xuan Zh, Lin G, Fang-Ying W, Jiang Y-B (2003) Development of fluorescent sensing of anions under excited-state intermolecular proton transfer signaling mechanism. Org Lett 5:2667–2670. doi: 10.1021/ol034846u CrossRefGoogle Scholar
  30. 30.
    Winstanley KJ, Sayer AM, Smith DK (2006) Anion binding by catechols - an NMR, optical and electrochemical study. Org Biomol Chem 4:1760–1767. doi: 10.1039/B516433h PubMedCrossRefGoogle Scholar
  31. 31.
    Winstanley KJ, Smith DK (2007) Ortho-substituted catechol derivatives: the effect of intramolecular hydrogen-bonding pathways on chloride anion recognition. J Org Chem 72:2803–2815. doi: 10.1021/Jo0623989 PubMedCrossRefGoogle Scholar
  32. 32.
    Hynes JT, Tran-Thi T-H, Granucci G (2002) Intermolecular photochemical proton transfer in solution: new insights and perspectives. J Photochem Photobio A: Chem 154:3–11. doi: 10.1016/s1010-6030(02)00304-0 CrossRefGoogle Scholar
  33. 33.
    Jarczewski A, Hubbard CD (2003) A review of proton transfer reactions between various carbon-acids and amine bases in aprotic solvents. J Mol Struc 649:287–307. doi: 10.1016/s0022-2860(03)00086-3 CrossRefGoogle Scholar
  34. 34.
    Arnaut LG, Formosinho SJ (1993) Excited-state proton transfer reactions. I. fundamentals and intermolecular reactions. J Photochem Photobiol A: Chem 75:1–20. doi: org/10.1016/1010-6030(93)80157-5 CrossRefGoogle Scholar
  35. 35.
    Abraham Y, Salman H, Suwinska K, Eichen Y (2011) Cyclo 2 benzimidazole: luminescence turn-on sensing of anions. Chem Commun 47:6087–6089. doi: 10.1039/c1cc10995b CrossRefGoogle Scholar
  36. 36.
    Xu Y, Pang Y (2010) Zinc binding-induced near-IR emission from excited-state intramolecular proton transfer of a bis(benzoxazole) derivative. Chem Commun 46:4070–4072. doi: 10.1039/c003230a CrossRefGoogle Scholar
  37. 37.
    Gong W, Harigae J, Seo J, Lee SS, Hiratani K (2008) Controllable synthesis, structures of amidecrownophane-type macrocycles and their binding ability toward anions. Tetrahedron Lett 49:2268–2271. doi: 10.1016/j.tetlet.2008.02.019 CrossRefGoogle Scholar
  38. 38.
    Dehkordi MN, Bordbar A-K, Mehrgardi MA, Mirkhani V (2011) Spectrophotometric study on the binding of two water soluble schiff base complexes of Mn (III) with ct-DNA. J Fluoresc 21:1649–1658. doi: 10.1007/s10895-011-0854-y PubMedCrossRefGoogle Scholar
  39. 39.
    Xu KX, Cheng PF, Zhao J, Wang CJ (2011) Enantioselective fluorescent sensors for amino acid derivatives based on BINOL bearing s-tryptophan unit: synthesis and chiral recognition. J Fluoresc 21:991–1000. doi: 10.1007/s10895-009-0585-5 PubMedCrossRefGoogle Scholar
  40. 40.
    Huang W, Su H, Yao S, Lin H, Cai Z, Lin H (2011) A simple and neutral receptor acting as a sensitive and switch-on fluorescent chemosensor for H2PO4. J Fluoresc 21:1697–1702. doi: 10.1007/s10895-011-0862-y PubMedCrossRefGoogle Scholar
  41. 41.
    Saravanakumar D, Devaraj S, Iyyampillai S, Mohandoss K, Kandaswamy M (2008) Schiff's base phenol-hydrazone derivatives as colorimetric chemosensors for fluoride ions. Tetrahedron Lett 49:127–132. doi: 10.1016/j.tetlet.2007.11.006 CrossRefGoogle Scholar
  42. 42.
    Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U CrossRefGoogle Scholar
  43. 43.
    Valeur B, Pouget J, Ernsting NP (1992) Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding. J Phys Chem 96:6545–6549. doi: 10.1021/j100195a008 CrossRefGoogle Scholar
  44. 44.
    Cohen MD, Schmidt GM (1962) Photochromy and thermochromy of anils. J Phys Chem 66:2442–2446. doi: 10.1021/j100818a030 CrossRefGoogle Scholar
  45. 45.
    Richey F, Becker RS (1968) Spectroscopy and mechanisms of the photo– and thermal reactions of photochromic Anils. J Chem Phys 49:2092–2100. doi: 10.1063/1.1670370 CrossRefGoogle Scholar
  46. 46.
    Naeimi H, Moradian M (2010) Synthesis and characterization of nitro-Schiff bases derived from 5-nitro-salicylaldehyde and various diamines and their complexes of Co(II). J Coord Chem 63:156–162. doi: 10.1080/00958970903225866 CrossRefGoogle Scholar
  47. 47.
    Lopez MV, Bermejo MR, Vazquez ME, Taglietti A, Zaragoza G, Pedrido R, Martinez-Calvo M (2010) Sulfonamide-imines as selective fluorescent chemosensors for the fluoride anion. Org Biomol Chem 8:357–362. doi: 10.1039/B916040j PubMedCrossRefGoogle Scholar
  48. 48.
    Gomez DE, Fabbrizzi L, Licchelli M, Monzani E (2005) Urea vs. thiourea in anion recognition. Org Biomol Chem 3:1495–1500. doi: 10.1039/B500123d PubMedCrossRefGoogle Scholar
  49. 49.
    Pfeffer FM, Lim KF, Sedgwick KJ (2007) Indole as a scaffold for anion recognition. Org Biomol Chem 5:1795–1799. doi: 10.1039/B702804k PubMedCrossRefGoogle Scholar
  50. 50.
    Duke RM, O'Brien JE, McCabe T, Gunnlaugsson T (2008) Colorimetric sensing of anions in aqueous solution using a charge neutral, cleft-like, amidothiourea receptor: tilting the balance between hydrogen bonding and deprotonation in anion recognition. Org Biomol Chem 6:4089–4092. doi: 10.1039/b807579d PubMedCrossRefGoogle Scholar
  51. 51.
    Sasaki S, Mizuno M, Naemura K, Tobe Y (2000) Synthesis and anion-selective complexation of cyclophane-based cyclic thioureas. J Org Chem 65:275–283. doi: 10.1021/jo991237k PubMedCrossRefGoogle Scholar
  52. 52.
    Chowdhury P, Panja S, Chakravorti S (2003) Excited state prototropic activities in 2-hydroxy 1-naphthaldehyde. J Phys Chem A 107:83–90. doi: 10.1021/jp026404q CrossRefGoogle Scholar
  53. 53.
    Mehata MS, Joshi HC, Tripathi HB (2002) Complexation of 6-hydroxyquinoline with trimethylamine in polar and non-polar solvents. Chem Phys Lett 366:628–635. doi: 10.1016/S0009-2614(02)01579-8 CrossRefGoogle Scholar
  54. 54.
    Boiocchi M, Boca LD, Gómez DEG, Fabbrizzi L, Licchelli M, Monzani E (2004) Nature of urea-fluoride interaction: incipient and definitive proton transfer. J Am Chem Soc 126:16507–16514. doi: 10.1021/ja045936c PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of ChemistryTianjin Normal UniversityTianjinChina

Personalised recommendations