Journal of Fluorescence

, Volume 22, Issue 5, pp 1231–1236 | Cite as

Fluoride-Triggered ESPT in the Binding with Sal(oph)en

  • Kai Liu
  • Jianzhong Huo
  • Bolin Zhu
  • Ran Huo


In this paper, anion binding and sensing affinity of the simple and easy-to-make salen, a typical class of ligand used comprehensively in metal coordination, was investigated. Results indicated that salophen was both a colorimetric and fluorescent selective chemosensor for fluoride ion, which operated by the anion-induced conformational changes and subsequently excited-state intramolecular proton transfer (ESPT) process. The F--induced quick response, as well as noticeable optical changes, suggested that anion-sensing mechanism maybe help to design and to synthesize the new preferential selective probes for F-.


ESPT Deprotonation Anion sensors Supramolecular chemistry Fluorescent 



We are grateful to National Natural Science Foundation of China (No. 21002069) and Doctoral Science Foundation (No. 52LX26).

Supplementary material

10895_2012_1063_MOESM1_ESM.docx (533 kb)
ESM 1 (DOCX 533 kb)


  1. 1.
    Yoon TP, Jacobsen EN (2003) Privileged chiral catalysts. Science 299:1691–1693. doi: 10.1126/science.1083622 PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J Am Chem Soc 112:2801–2803. doi: 10.1021/ja00163a052 CrossRefGoogle Scholar
  3. 3.
    Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T (1990) Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron Letters 31:7345–7348. doi: 10.1016/s0040-4039(00)88562-7 CrossRefGoogle Scholar
  4. 4.
    Cozzi PG (2004) Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421. doi: 10.1039/b307853c PubMedCrossRefGoogle Scholar
  5. 5.
    Haak RM, Wezenberg SJ, Kleij AW (2010) Cooperative multimetallic catalysis using metallosalens. Chem Commun 2713–2723. doi: 10.1039/c001392g
  6. 6.
    Garnovskii AD, Nivorozhkin AL, Minkin VI (1993) Ligand environment and the structure of schiff base adducts and tetracoordinated metal-chelates. Coord Chem Rev 126:1–69. doi: 10.1016/0010-8545(93)85032-y CrossRefGoogle Scholar
  7. 7.
    Zhang C, Zhang X, Zhang X, Ou X, Zhang W, Jie J, Chang JC, Lee C-S, Lee S-T (2009) Facile one-step fabrication of ordered organic nanowire films. Adv Mater 21:4172–4175. doi: 10.1002/adma.200802793 CrossRefGoogle Scholar
  8. 8.
    Wezenberg SJ, Kleij AW (2008) Material applications for salen frameworks. Angew Chem Int Ed 47:2354–2364. doi: 10.1002/anie.200702468 CrossRefGoogle Scholar
  9. 9.
    Cho S-H, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006) A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem Commun 2563–2565. doi: 10.1039/b600408c
  10. 10.
    Routier SB, Bernier JL, Catteau MP, Bailly C (1997) Highly preferential cleavage of unpaired guanines in DNA by a functionalized salen-nickel complex. Bioorg Med Chem Lett 7:63–66. doi: 10.1016/S0960-894X(96)00569-0 CrossRefGoogle Scholar
  11. 11.
    Puglisi A, Tabbi G, Vecchio G (2004) Bioconjugates of cyclodextrins of manganese salen-type ligand with superoxide dismutase activity. J Inorg Biochem 98:969–976. doi: 10.1016/j.jinorgbio.2004.02.012 PubMedCrossRefGoogle Scholar
  12. 12.
    Doctrow SR, Huffman K, Marcus CB, Tocco G, Malfroy E, Adinolfi CA, Kruk H, Baker K, Lazarowych N, Mascarenhas J, Malfroy B (2002) Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure − activity relationship studies. J Med Chem 45:4549–4558. doi: 10.1021/jm020207y PubMedCrossRefGoogle Scholar
  13. 13.
    Dalla CA, De Bernardin P, Forte G, Yafteh MF (2010) Metal-salophen-based receptors for anions. Chem Soc Rev 39:3863–3874. doi: 10.1039/b926222a CrossRefGoogle Scholar
  14. 14.
    Ganjali MR, Norouzi P, Hatambeygi N, Salavati-Niasari M (2006) Anion recognition: fabrication of a highly selective and sensitive HPO42- PVC sensor based on a oxo-molybdenum methyl-salen. J Brazil Chem Soc 17:859–865CrossRefGoogle Scholar
  15. 15.
    Mao S, Liu K, Lu F, Du L (2010) Colorimetric sensors based on hydrogen-bond-induced π-delocalization and/or anion-triggered deprotonation. Mini-Rev Org Chem 7:221–229CrossRefGoogle Scholar
  16. 16.
    Arnendola V, Bonizzoni M, Esteban-Gomez D, Fabbrizzi L, Licchelli M, Sancenon F, Taglietti A (2006) Some guidelines for the design of anion receptors. Coord Chem Rev 250:1451–1470. doi: 10.1016/j.ccr.2006.01.006 CrossRefGoogle Scholar
  17. 17.
    Rudkevich DM, Stauthamer WPRV, Verboom W, Engbersen JFJ, Harkema S, Reinhoudt DN (1992) UO2-salenes: neutral receptors for anions with a high selectivity for dihydrogen phosphate. J Am Chem Soc 114:9671–9673. doi: 10.1021/ja00050a064 CrossRefGoogle Scholar
  18. 18.
    Vigato PA, Tamburini S (2004) The challenge of cyclic and acyclic schiff bases and related derivatives. Coord Chem Rev 248:1717–2128. doi: 10.1016/j.cct.2003.09.003 CrossRefGoogle Scholar
  19. 19.
    Cametti M, Dalla Cort A, Mandolini L, Nissinen M, Rissanen K (2008) Specific recognition of fluoride anion using a metallamacrocycle incorporating a uranyl-salen unit. New J Chem 32:1113–1116. doi: 10.1039/b806149a CrossRefGoogle Scholar
  20. 20.
    Bandoli G, Clemente DA, Croatto JU, Vidali M, Vigato PA (1971) Preparation and crystal and molecular structure of [NN′-o-phenylene-bis(salicylideneiminato)UO2(EtOH)]. J Chem Soc D 1330–1331. doi: 10.1039/C29710001330
  21. 21.
    Bandoli G, Clemente DA (1975) Preparation and crystal structure of aqua[bis(2-hydroxyphenylimino)-ethanato-OO′NN′-]dioxouranium. J Chem Soc, Dalton Trans: 612–615. doi: 10.1039/DT9750000612
  22. 22.
    Cort AD, Mandolini L, Pasquini C, Rissanen K, Russo L, Schiaffno L (2007) Zinc-salophen complexes as selective receptors for tertiary amines. New J Chem 31:1633–1638. doi: 10.1039/b700723j CrossRefGoogle Scholar
  23. 23.
    Germain ME, Vargo TR, McClure BA, Rack JJ, Patten PGV, Odoi M, Knapp MJ (2008) Quenching mechanism of Zn(Salicylaldimine) by nitroaromatics. Inorg Chem 47:6203–6211. doi: 10.1021/ic702469q PubMedCrossRefGoogle Scholar
  24. 24.
    Kleij AW, Kuil M, Tooke DM, Lutz M, Spek AL, Reek JNH (2005) Zn-II-salphen complexes as versatile building blocks for the construction of supramolecular box assemblies. Chem-Eur J 11:4743–4750. doi: 10.1002/chem.200500227 PubMedCrossRefGoogle Scholar
  25. 25.
    Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476. doi: 10.1021/cr010421e PubMedCrossRefGoogle Scholar
  26. 26.
    Luecke H, Quiocho FA (1990) High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347:402–406. doi: 10.1038/347402a0 PubMedCrossRefGoogle Scholar
  27. 27.
    Djedovic N, Ferdani R, Harder E, Pajewska J, Pajewski R, Weber ME, Schlesinger PH, Gokel GW (2005) The C- and N-terminal residues of synthetic heptapeptide ion channels influence transport efficacy through phospholipid bilayers. New J Chem 29:291–305. doi: 10.1039/b417091c PubMedCrossRefGoogle Scholar
  28. 28.
    Sivakumar R, Reena V, Ananthi N, Babu M, Anandan S, Velmathi S (2010) Colorimetric and fluorescence sensing of fluoride anions with potential salicylaldimine based schiff base receptors. Spectrochim Acta A Mol Biomol Spectrosc 75:1146–1151. doi: 10.1016/j.saa.2009.12.077 PubMedCrossRefGoogle Scholar
  29. 29.
    Xuan Zh, Lin G, Fang-Ying W, Jiang Y-B (2003) Development of fluorescent sensing of anions under excited-state intermolecular proton transfer signaling mechanism. Org Lett 5:2667–2670. doi: 10.1021/ol034846u CrossRefGoogle Scholar
  30. 30.
    Winstanley KJ, Sayer AM, Smith DK (2006) Anion binding by catechols - an NMR, optical and electrochemical study. Org Biomol Chem 4:1760–1767. doi: 10.1039/B516433h PubMedCrossRefGoogle Scholar
  31. 31.
    Winstanley KJ, Smith DK (2007) Ortho-substituted catechol derivatives: the effect of intramolecular hydrogen-bonding pathways on chloride anion recognition. J Org Chem 72:2803–2815. doi: 10.1021/Jo0623989 PubMedCrossRefGoogle Scholar
  32. 32.
    Hynes JT, Tran-Thi T-H, Granucci G (2002) Intermolecular photochemical proton transfer in solution: new insights and perspectives. J Photochem Photobio A: Chem 154:3–11. doi: 10.1016/s1010-6030(02)00304-0 CrossRefGoogle Scholar
  33. 33.
    Jarczewski A, Hubbard CD (2003) A review of proton transfer reactions between various carbon-acids and amine bases in aprotic solvents. J Mol Struc 649:287–307. doi: 10.1016/s0022-2860(03)00086-3 CrossRefGoogle Scholar
  34. 34.
    Arnaut LG, Formosinho SJ (1993) Excited-state proton transfer reactions. I. fundamentals and intermolecular reactions. J Photochem Photobiol A: Chem 75:1–20. doi: org/10.1016/1010-6030(93)80157-5 CrossRefGoogle Scholar
  35. 35.
    Abraham Y, Salman H, Suwinska K, Eichen Y (2011) Cyclo 2 benzimidazole: luminescence turn-on sensing of anions. Chem Commun 47:6087–6089. doi: 10.1039/c1cc10995b CrossRefGoogle Scholar
  36. 36.
    Xu Y, Pang Y (2010) Zinc binding-induced near-IR emission from excited-state intramolecular proton transfer of a bis(benzoxazole) derivative. Chem Commun 46:4070–4072. doi: 10.1039/c003230a CrossRefGoogle Scholar
  37. 37.
    Gong W, Harigae J, Seo J, Lee SS, Hiratani K (2008) Controllable synthesis, structures of amidecrownophane-type macrocycles and their binding ability toward anions. Tetrahedron Lett 49:2268–2271. doi: 10.1016/j.tetlet.2008.02.019 CrossRefGoogle Scholar
  38. 38.
    Dehkordi MN, Bordbar A-K, Mehrgardi MA, Mirkhani V (2011) Spectrophotometric study on the binding of two water soluble schiff base complexes of Mn (III) with ct-DNA. J Fluoresc 21:1649–1658. doi: 10.1007/s10895-011-0854-y PubMedCrossRefGoogle Scholar
  39. 39.
    Xu KX, Cheng PF, Zhao J, Wang CJ (2011) Enantioselective fluorescent sensors for amino acid derivatives based on BINOL bearing s-tryptophan unit: synthesis and chiral recognition. J Fluoresc 21:991–1000. doi: 10.1007/s10895-009-0585-5 PubMedCrossRefGoogle Scholar
  40. 40.
    Huang W, Su H, Yao S, Lin H, Cai Z, Lin H (2011) A simple and neutral receptor acting as a sensitive and switch-on fluorescent chemosensor for H2PO4. J Fluoresc 21:1697–1702. doi: 10.1007/s10895-011-0862-y PubMedCrossRefGoogle Scholar
  41. 41.
    Saravanakumar D, Devaraj S, Iyyampillai S, Mohandoss K, Kandaswamy M (2008) Schiff's base phenol-hydrazone derivatives as colorimetric chemosensors for fluoride ions. Tetrahedron Lett 49:127–132. doi: 10.1016/j.tetlet.2007.11.006 CrossRefGoogle Scholar
  42. 42.
    Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U CrossRefGoogle Scholar
  43. 43.
    Valeur B, Pouget J, Ernsting NP (1992) Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding. J Phys Chem 96:6545–6549. doi: 10.1021/j100195a008 CrossRefGoogle Scholar
  44. 44.
    Cohen MD, Schmidt GM (1962) Photochromy and thermochromy of anils. J Phys Chem 66:2442–2446. doi: 10.1021/j100818a030 CrossRefGoogle Scholar
  45. 45.
    Richey F, Becker RS (1968) Spectroscopy and mechanisms of the photo– and thermal reactions of photochromic Anils. J Chem Phys 49:2092–2100. doi: 10.1063/1.1670370 CrossRefGoogle Scholar
  46. 46.
    Naeimi H, Moradian M (2010) Synthesis and characterization of nitro-Schiff bases derived from 5-nitro-salicylaldehyde and various diamines and their complexes of Co(II). J Coord Chem 63:156–162. doi: 10.1080/00958970903225866 CrossRefGoogle Scholar
  47. 47.
    Lopez MV, Bermejo MR, Vazquez ME, Taglietti A, Zaragoza G, Pedrido R, Martinez-Calvo M (2010) Sulfonamide-imines as selective fluorescent chemosensors for the fluoride anion. Org Biomol Chem 8:357–362. doi: 10.1039/B916040j PubMedCrossRefGoogle Scholar
  48. 48.
    Gomez DE, Fabbrizzi L, Licchelli M, Monzani E (2005) Urea vs. thiourea in anion recognition. Org Biomol Chem 3:1495–1500. doi: 10.1039/B500123d PubMedCrossRefGoogle Scholar
  49. 49.
    Pfeffer FM, Lim KF, Sedgwick KJ (2007) Indole as a scaffold for anion recognition. Org Biomol Chem 5:1795–1799. doi: 10.1039/B702804k PubMedCrossRefGoogle Scholar
  50. 50.
    Duke RM, O'Brien JE, McCabe T, Gunnlaugsson T (2008) Colorimetric sensing of anions in aqueous solution using a charge neutral, cleft-like, amidothiourea receptor: tilting the balance between hydrogen bonding and deprotonation in anion recognition. Org Biomol Chem 6:4089–4092. doi: 10.1039/b807579d PubMedCrossRefGoogle Scholar
  51. 51.
    Sasaki S, Mizuno M, Naemura K, Tobe Y (2000) Synthesis and anion-selective complexation of cyclophane-based cyclic thioureas. J Org Chem 65:275–283. doi: 10.1021/jo991237k PubMedCrossRefGoogle Scholar
  52. 52.
    Chowdhury P, Panja S, Chakravorti S (2003) Excited state prototropic activities in 2-hydroxy 1-naphthaldehyde. J Phys Chem A 107:83–90. doi: 10.1021/jp026404q CrossRefGoogle Scholar
  53. 53.
    Mehata MS, Joshi HC, Tripathi HB (2002) Complexation of 6-hydroxyquinoline with trimethylamine in polar and non-polar solvents. Chem Phys Lett 366:628–635. doi: 10.1016/S0009-2614(02)01579-8 CrossRefGoogle Scholar
  54. 54.
    Boiocchi M, Boca LD, Gómez DEG, Fabbrizzi L, Licchelli M, Monzani E (2004) Nature of urea-fluoride interaction: incipient and definitive proton transfer. J Am Chem Soc 126:16507–16514. doi: 10.1021/ja045936c PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of ChemistryTianjin Normal UniversityTianjinChina

Personalised recommendations