Journal of Fluorescence

, Volume 22, Issue 5, pp 1223–1229 | Cite as

Express Method for Determination of Low Value of Trans-membrane Potential of Living Cells with Fluorescence Probe: Application on Haemocytes at Immune Responses

  • Yuriy I. Glazachev
  • Alexandra D. Semenova
  • Natalia A. Kryukova
  • Irina A. Slepneva
  • Viktor V. Glupov


The method for measurement of trans-membrane potential of cell membrane was evaluated for the case of low potential value using fluorescence probe 4-(4-dimethylaminostyryl)-1-methylpyridinium, DSM. The method is based on comparative titration of cells with probe in buffers containing Na+ or K+. The apparent trans-membrane potential obtained with this way is a result of K+-Na+ pump activity. The presented approach allowed measuring the low value of potential with 1–2 mV of accuracy without additional calibration procedures. The method was applied for investigation of potential of cell membrane of haemocytes of Galleria mellonella larvae. The value of potential of intact insect’s haemocytes was found in the range from −10 to −20 mV. The change of potential value of haemocytes was investigated under model immune response and natural envenomation and parasitizing. The obtained deviations of cell membrane potential were in good correlation with changes of activity of main immune reactions, described in literature and obtained by us earlier.


Potential sensitive probe K+−Na+ pump Immune response Parasitizing 



This study was supported by Russian Foundation for Basic Research (No. 09-04-01582), SB RAS No 46 and by Ministry of Education and Science of Russian Federation, # 2010–1.1-133-133-030.


  1. 1.
    Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535. doi: 10.1146/annurev.biochem.71.102201.141218 PubMedCrossRefGoogle Scholar
  2. 2.
    Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279(3):C541–C566PubMedGoogle Scholar
  3. 3.
    Przybylo M, Borowik T, Langner M (2010) Fluorescence techniques for determination of the membrane potentials in high throughput screening. J Fluoresc 20(6):1139–1157. doi: 10.1007/s10895-010-0665-6 PubMedCrossRefGoogle Scholar
  4. 4.
    Ariki S, Koori K, Osaki T, Motoyama K, Inamori KI, Kawabata SI (2004) A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides. Proc Natl Acad Sci U S A 101(4):953–958. doi: 10.1073/pnas.0306904101 PubMedCrossRefGoogle Scholar
  5. 5.
    Takle G, Lackie AM (1985) Surface-charge of insect hemocytes, examined using cell electrophoresis and cationized ferritin-binding. J Cell Sci 75:207–214PubMedGoogle Scholar
  6. 6.
    Morozova GI, Dobretsov GE, Dubur GY, Dubur RR, Golitsin VM, Barenboim GM, Vladimirov YA (1981) Fluorescence of 4-(Para-Dimethylaminostyryl)-1-Methylpyridinium in the live cell. Tsitologiya 23(8):916–923Google Scholar
  7. 7.
    Leonard C, Ratcliffe NA, Rowley AF (1985) The role of prophenoloxidase activation in non-self recognition and phagocytosis by insect blood-cells. J Insect Physiol 31(10):789–799CrossRefGoogle Scholar
  8. 8.
    Correa NM, Moyano F, Silber JJ (2008) On the investigation of the bilayer functionalities of 1,2-di-oleoyl-sn-glycero-3-phosphatidylcholine (DOPC) large unilamellar vesicles using cationic hemicyanines as optical probes: a wavelength-selective fluorescence approach. J Colloid Interface Sci 317(1):332–345. doi: 10.1016/j.jcis.2007.09.051 PubMedCrossRefGoogle Scholar
  9. 9.
    Gorbenko GP, Dyubko TS (1996) Interaction of 4-(n-dimethylaminostyryl)-1-methylpyridinium n-toluenesulfonate with liposomes: fluorescence spectra analysis. Biofizika 41(2):348–354PubMedGoogle Scholar
  10. 10.
    Kurtaliev EN, Nizomov N, Nizamov SN, Khodjayev G (2009) Spectral-luminescent study of the interaction of some styrylcyanine dyes with bovine serum albumin and DNA in aqueous solutions. J Mol Struct 936(1–3):199–205. doi: 10.1016/j.molstruc.2009.07.040 Google Scholar
  11. 11.
    Sominsky VN, Bluma RK, Kalnina IE (1986) Binding of fluorescent-probe Dsm to erythrocyte-membranes in healthy-subjects and some sick patients. Biol Membr 3(3):282–286Google Scholar
  12. 12.
    Moreau SJM, Guillot S (2005) Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem Mol Biol 35(11):1209–1223. doi: 10.1016/j.ibmb.2005.07.003 PubMedCrossRefGoogle Scholar
  13. 13.
    Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic hymenoptera. Ann Rev Entomol 51:233–258. doi: 10.1146/annurev.ento.51.110104.151029 CrossRefGoogle Scholar
  14. 14.
    Slavnova TI, Antonov SM, Magazanik LG, Tonkikh AK, Kosovskii AV, Sadykov AA, Abduvakhabov AA (1987) Effect of the toxin from venom of the ichneumon-fly habrobracon-hebetor (Say) upon insect neuromuscular transfer. Dokl Akad Nauk SSSR 297(2):492–494Google Scholar
  15. 15.
    Carton Y, Nappi AJ (1997) Drosophila cellular immunity against parasitoids. Parasitol Today 13(6):218–227PubMedCrossRefGoogle Scholar
  16. 16.
    Labrosse C, Carton Y, Dubuffet A, Drezen JM, Poirie M (2003) Active suppression of D. melanogaster immune response by long gland products of the parasitic wasp Leptopilina boulardi. J Insect Physiol 49(5):513–522PubMedCrossRefGoogle Scholar
  17. 17.
    Shelby KS, Adeyeye OA, Okot-Kotber BM, Webb BA (2000) Parasitism-linked block of host plasma melanization. J Invertebr Pathol 75(3):218–225PubMedCrossRefGoogle Scholar
  18. 18.
    Kryukova NA, Dubovskiy IM, Chertkova EA, Vorontsova YL, Slepneva IA, Glupov VV (2011) The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae. J Insect Physiol 57(6):796–800. doi: 10.1016/j.jinsphys.2011.03.008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yuriy I. Glazachev
    • 1
  • Alexandra D. Semenova
    • 1
  • Natalia A. Kryukova
    • 2
  • Irina A. Slepneva
    • 1
  • Viktor V. Glupov
    • 2
  1. 1.Institute of Chemical Kinetics and CombustionSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Systematics and Ecology of AnimalsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations