Journal of Fluorescence

, Volume 22, Issue 3, pp 849–855 | Cite as

The pH Dependence of the Total Fluorescence of Graphite Oxide

  • Sven Kochmann
  • Thomas Hirsch
  • Otto S. Wolfbeis
Original Paper


Graphite oxide was characterized by pH dependent excitation-emission matrices from 300 to 500 nm in excitation and from 320 to 600 nm in emission which reveal the presence of two pH steps. These are assigned to the presence of carboxy groups and phenolic hydroxy groups, respectively. Fluorescence is strongest at 470 nm excitation and 555 nm emission. The fluorescence intensity is a function of pH but not of temperature, and is not quenched by oxygen.


Graphite oxide pH-dependence Fluorescence Excitation-emission matrix Nano materials 



The work was performed within the frame of the Graduate College 1570 funded by the DFG (Deutsche Forschungsgemeinschaft).


  1. 1.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145. doi:10.1021/cr900070d, pMID: 19610631.PubMedCrossRefGoogle Scholar
  2. 2.
    Bolotin K, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355. doi: 10.1016/j.ssc.2008.02.024 CrossRefGoogle Scholar
  3. 3.
    Özyilmaz B, Jarillo-Herrero P, Efetov D, Abanin DA, Levitov LS, Kim P (2007) Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions. Phys Rev Lett 99(16):166804. doi:10.1103/PhysRevLett.99.166804 PubMedCrossRefGoogle Scholar
  4. 4.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655. doi: 10.1038/nmat1967 PubMedCrossRefGoogle Scholar
  5. 5.
    Qazi M, Vogt T, Koley G (2007) Trace gas detection using nanostructured graphite layers. Appl Phys Lett 91(23):233101–233103. doi: 10.1063/1.2820387 CrossRefGoogle Scholar
  6. 6.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. doi: 10.1002/adma.201001068 PubMedCrossRefGoogle Scholar
  7. 7.
    Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem 121(26):4879–4881. doi: 10.1002/ange.200901479 CrossRefGoogle Scholar
  8. 8.
    Sun X, Liu Z, Welsher K, Robinson J, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Research 1:203–212. doi: 10.1007/s12274-008-8021-8 PubMedCrossRefGoogle Scholar
  9. 9.
    Luo Z, Vora PM, Mele EJ, Johnson ATC, Kikkawa JM (2009) Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett 94(11):111,909–3. doi: 10.1063/1.3098358 CrossRefGoogle Scholar
  10. 10.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photon 4(9):611–622. doi: 10.1038/nphoton.2010.186 CrossRefGoogle Scholar
  11. 11.
    Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024. doi: 10.1038/nchem.907 PubMedCrossRefGoogle Scholar
  12. 12.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460. doi: 10.1038/nature06016 PubMedCrossRefGoogle Scholar
  13. 13.
    Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738. doi: 10.1002/adma.200902825 PubMedCrossRefGoogle Scholar
  14. 14.
    Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509. doi: 10.1002/adma.200901996 PubMedCrossRefGoogle Scholar
  15. 15.
    Chen JL, Yan XP (2011) Ionic strength and ph reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular ph. Chem Commun 47(11):3135–3137. doi: 10.1039/C0CC03999C CrossRefGoogle Scholar
  16. 16.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. doi: 10.1021/ja01539a017 CrossRefGoogle Scholar
  17. 17.
    Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877. doi: 10.1021/ja803688x PubMedCrossRefGoogle Scholar
  18. 18.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682. doi: 10.1021/nl080604h PubMedCrossRefGoogle Scholar
  19. 19.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1290. doi: 10.1039/B613962K PubMedCrossRefGoogle Scholar
  20. 20.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240. doi: 10.1039/B917103G CrossRefGoogle Scholar
  21. 21.
    Zhao GJ, Liu JY, Zhou LC, Han KL (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111(30):8940–8945. doi: 10.1021/jp0734530 PubMedCrossRefGoogle Scholar
  22. 22.
    Inoue H, Hida M, Nakashima N, Yoshihara K (1982) Picosecond fluorescence lifetimes of anthraquinone derivatives. radiationless deactivation via intra- and intermolecular hydrogen bonds. J Phys Chem 86(16):3184–3188. doi: 10.1021/j100213a024 CrossRefGoogle Scholar
  23. 23.
    Zuluaga AF, Utzinger U, Durkin A, Fuchs H, Gillenwater A, Jacob R, Kemp B, Fan J, Richards-Kortum R (1999) Fluorescence excitation emission matrices of human tissue: A system for in vivo measurement and method of data analysis. Appl Spectrosc 53(3):302–311. CrossRefGoogle Scholar
  24. 24.
    Wolfbeis OS, Leiner M (1985) Mapping of the total fluorescence of human blood serum as a new method for its characterization. Anal Chim Acta 167:203–215. doi: 10.1016/S0003-2670(00)84422-0 CrossRefGoogle Scholar
  25. 25.
    Patra D, Mishra AK (2002) Study of diesel fuel contamination by excitation emission matrix spectral subtraction fluorescence. Anal Chim Acta 454(2):209–215. doi: 10.1016/S0003-2670(01)01568-9 CrossRefGoogle Scholar
  26. 26.
    Bugden J, Yeung C, Kepkay P, Lee K (2008) Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (eems) to fingerprint oil and chemically dispersed oil in seawater. Mar Pollut Bull 56(4):677–685. doi: 10.1016/j.marpolbul.2007.12.022 PubMedCrossRefGoogle Scholar
  27. 27.
    Baker A (2001) Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environ Sci Technol 35(5):948–953. doi: 10.1021/es000177t PubMedCrossRefGoogle Scholar
  28. 28.
    Coble PG (1996) Characterization of marine and terrestrial dom in seawater using excitation-emission matrix spectroscopy. Mar Chem 51(4):325–346. doi: 10.1016/0304-4203(95)00062-3 CrossRefGoogle Scholar
  29. 29.
    Berberan-Santos MN, Garcia JMM (1996) Unusually strong delayed fluorescence of c70. J Am Chem Soc 118(39):9391–9394. doi: 10.1021/ja961782s CrossRefGoogle Scholar
  30. 30.
    Nagl S, Baleizão C, Borisov SM, Schäferling M, Berberan-Santos MN, Wolfbeis OS (2007) Optical sensing and imaging of trace oxygen with record response. Angew Chem, Int Ed 46(13):2317–2319. doi: 10.1002/anie.200603754 CrossRefGoogle Scholar
  31. 31.
    Wang F, Dukovic G, Brus LE, Heinz TF (2004) Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys Rev Lett 92(17):177401. doi:10.1103/PhysRevLett.92.177401 PubMedCrossRefGoogle Scholar
  32. 32.
    Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92. doi: 10.1038/nmat1276 PubMedCrossRefGoogle Scholar
  33. 33.
    Wang X, Cao L, Yang ST, Lu F, Meziani M, Tian L, Sun K, Bloodgood M, Sun YP (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem 122(31):5438–5442. doi: 10.1002/ange.201000982 CrossRefGoogle Scholar
  34. 34.
    Baker S, Baker G (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem, Int Ed 49(38):6726–6744. doi: 10.1002/anie.200906623 CrossRefGoogle Scholar
  35. 35.
    Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319. doi: 10.1021/ja073527l PubMedCrossRefGoogle Scholar
  36. 36.
    Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113(43):18546–18551. doi: 10.1021/jp905912n CrossRefGoogle Scholar
  37. 37.
    Jung J, Cheon D, Liu F, Lee K, Seo T (2010) A graphene oxide based immuno-biosensor for pathogen detection. Angew Chem 122(33):5844–5847. doi: 10.1002/ange.201001428 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sven Kochmann
    • 1
  • Thomas Hirsch
    • 1
  • Otto S. Wolfbeis
    • 1
  1. 1.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany

Personalised recommendations