Journal of Fluorescence

, Volume 22, Issue 2, pp 707–717 | Cite as

Influence of Substituent and Solvent on the Radiative Process of Singlet Excited States of Novel Cyclic Azacyanine Derivatives

  • Digambara Patra
  • Nagham N. Malaeb
  • Makhluf J. Haddadin
  • Mark J. Kurth
Original Paper


The photophysical properties of novel cyclic azacyanine derivatives have been investigated in acetonitrile, N-butyronitrile, methanol, ethanol, DMF and water. Introduction of electron donating or accepting groups on the cyclic azacyanine has a direct impact on the spectroscopic and photophysical properties. Irrespective of the nature of the substitution, azacyanine shows a general solvent relaxation in accordance with Lippert-Mataga’s prediction; however, in protic solvent, specific interactions are encountered. Fluorescence lifetime decay suggests a relaxation in the nanosecond time scale with monoexponential decay in polar solvents and biexponential decay in non polar solvents. The fluorescence lifetime of azacyanines are found to be longer than popular cy3 dyes. An electron donating substituent increases the fluorescence lifetime and influences the radiative process, whereas an electron withdrawing group marginally increases the excited state lifetime but remarkably enhances the radiative process. The fluorescence quantum yield of substituted cyclic azacyanine in water is noted to be at least five fold higher than the popular cy3 dye.


Cyclic Azocyanine Solvent effect Substituent effect Excited state process Fluorescence lifetime, Radiative process 



The authors thank Lebanese National Council for Scientific Research (LNCSR) (D.P.) and American University of Beirut through its University Research Board (URB) for financial support, Long- term Faculty Development grant (D.P.) and Junior Faculty Research Leave (D.P.).

Supplementary material

10895_2011_1006_MOESM1_ESM.doc (174 kb)
Supplement 1 Plot of absorption maxima (A) and emission maxima (B) of CAC, F-CAC and MeO-CAC versus π* scale of the solvents. (DOC 173 kb)


  1. 1.
    Amos AT, Burrows BL (1973) Adv Quantum Chem 7:289–313CrossRefGoogle Scholar
  2. 2.
    Rossky PJ, Simon JD (1994) Nature 370:263–269PubMedCrossRefGoogle Scholar
  3. 3.
    Maroncelli M, MacInnis J, Fleming GR (1989) Science 243:1674–1681PubMedCrossRefGoogle Scholar
  4. 4.
    McHale JL (2001) Acc Chem Res 34:265–272PubMedCrossRefGoogle Scholar
  5. 5.
    Horng ML, Gardecki JA, Papazyan A, Maroncelli M (1995) J Phys Chem 99:17311–17337CrossRefGoogle Scholar
  6. 6.
    Joo T, Jia Y, Yu J-Y, Lang MJ, Fleming GR (1996) J Chem Phys 104:6089–6108CrossRefGoogle Scholar
  7. 7.
    Vöhringer P, Westervelt RA, Arnett DC, Feldstein MJ, Scherer NF (1995) J Raman Spectrosc 26:535–551CrossRefGoogle Scholar
  8. 8.
    Bayliss NS (1950) J Chem Phys 18:292–296CrossRefGoogle Scholar
  9. 9.
    Bayliss NS, McRae EG (1954) J Phys Chem 58:1002–1006CrossRefGoogle Scholar
  10. 10.
    Onsager L (1936) J Am Chem Soc 58:1486–1493CrossRefGoogle Scholar
  11. 11.
    Mataga N, Kubota T (1970) Molecular Interactions of Electronic Spectra. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Liptay W (1974) Excited States. In: Lim EC (Ed) Academic Press: New York; Vol. I, pp 129–229Google Scholar
  13. 13.
    Patra D, Barakat C (2011) Spectrochim Acta Part A 79:1034CrossRefGoogle Scholar
  14. 14.
    Lakowicz JR (1999) Principles of Fluorescence Spectroscopy. Kluwer Academic, Plenum Publishers, New YorkGoogle Scholar
  15. 15.
    Tolbert LM, Nesselroth SM, Netzel TL, Raya N, Stapletons M (1992) J Phys Chem 96:4492–4496CrossRefGoogle Scholar
  16. 16.
    Biczok W, Berces T, Marta F (1993) J Phys Chem 97:8895–8899CrossRefGoogle Scholar
  17. 17.
    Turro N (1978) Modern Molecular Photochemistry. Benjamin Cummings, New YorkGoogle Scholar
  18. 18.
    Wagner PJ, Siebert EJ (1981) J Am Chem Soc 103:7329–7335CrossRefGoogle Scholar
  19. 19.
    Behera GB, Behera PK, Mishra BK (2007) J Surface Sci Tech 23:1–31Google Scholar
  20. 20.
    Doja MQ (1932) Chem Rev 11(3):273–321CrossRefGoogle Scholar
  21. 21.
    Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2000) Chem Rev 100:1973–2011PubMedCrossRefGoogle Scholar
  22. 22.
    Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS (1993) Bioconjug Chem 4:105–111PubMedCrossRefGoogle Scholar
  23. 23.
    Ernst LA, Gupta RK, Mujumdar RB, Waggoner AS (1989) Cytometry 10:3–10PubMedCrossRefGoogle Scholar
  24. 24.
    Blower MD, Feric E, Weis K, Heald R (2007) J Cell Biol 179:1365–1373PubMedCrossRefGoogle Scholar
  25. 25.
    Patra D, Gregor I, Enderlein J (2004) J Phys Chem A 108:6836–6841CrossRefGoogle Scholar
  26. 26.
    Patra D (2008) Appl Spectrosc Rev 43:389–415CrossRefGoogle Scholar
  27. 27.
    Patra D (2008) Curr Chem Biol 2:267–277CrossRefGoogle Scholar
  28. 28.
    Singh MK (2009) Phys Chem Chem Phys 11:7225–7230PubMedCrossRefGoogle Scholar
  29. 29.
    Deniz AA, Laurence TA, Beligere GS, Dahan M, Martin AB, Chemla DS, Dawson PE, Schultz PG, Weiss S (2000) Proc Nat Acad Sci USA 97:5179–5184PubMedCrossRefGoogle Scholar
  30. 30.
    Brooker LGC, Keyes GH, Sprague RH, Van Dyke RH, VanLare E, Vanzandt G, White FL, Cressman HWJ, Dent SG (1951) J Am Chem Soc 73:5326–5332CrossRefGoogle Scholar
  31. 31.
    Valenzeno DP (1987) Photochem Photobiol 47:147–160CrossRefGoogle Scholar
  32. 32.
    Panigrahi M, Dash S, Patel S, Mishra BK (2011) J Phys Chem B 115:99–108PubMedCrossRefGoogle Scholar
  33. 33.
    West W, Geddes AL (1964) J Phys Chem 68:837–847CrossRefGoogle Scholar
  34. 34.
    Cong P, Yan YJ, Deuel HP, Simon JD (1994) J Chem Phys 100:7855–7866CrossRefGoogle Scholar
  35. 35.
    Yang T-S, Vöhringer P, Arnett DC, Scherer NF (1995) J Chem Phys 103:8346–8359CrossRefGoogle Scholar
  36. 36.
    Yu A, Tolbert CA, Farrow DA, Jonas DM (2002) J Phys Chem A 106:9407–9419CrossRefGoogle Scholar
  37. 37.
    Haddadin MJ, Kurth MJ, Olmstead MM (2000) Tetrahedron Lett 41:5613–5616CrossRefGoogle Scholar
  38. 38.
    Huang KS, Haddadin MJ, Olmstead MM, Kurth MJ (2001) J Org Chem 66:1310–1315PubMedCrossRefGoogle Scholar
  39. 39.
    Verbeeck A, Verrept P, Callant P, Caron K (1999) Eur Pat Appl EP 890873 A1 19990113Google Scholar
  40. 40.
    Kurose Y, Miyazawa T, Kubo H, Uchida N, Furomoto S, Satake K, Shoda H, Aizawa Y, Dan-Oh Y, Toki M (2007) PCT Int Appl WO 2007074861 A1 20070705Google Scholar
  41. 41.
    Rout MK, Patnaik LN, Bhuyan B (1977) Zeitschrift Physikalis. Chem (Leipzig) 258:601–604Google Scholar
  42. 42.
    Ozawa T, Minakami J (1998) Jpn. Kokai Tokkyo Koho JP10086533 A 19980407Google Scholar
  43. 43.
    Albert IDL, Das PK, Ramasesha S (1993) J Opt Soc Am B Opt Phys 10:1365–1371CrossRefGoogle Scholar
  44. 44.
    Griffiths J, Li Z (1993) Dyes Pigmen 21:205–216CrossRefGoogle Scholar
  45. 45.
    Nourmohammadian F, Gholami MD, Davoudzadeh M (2009) Synthetic Comm 39:1981–1991CrossRefGoogle Scholar
  46. 46.
    Plater MJ, Barnes P, McDonald LK, Wallace S, Archer N, Gelbrich T, Horton PN, Hursthouse MB (2009) Org Biomol Chem 7:1633–1641PubMedCrossRefGoogle Scholar
  47. 47.
    Cetinkol OP, Engelhart AE, Nanjunda RK, Wilson WD, Hud NV (2008) ChemBio Chem 9:1889–1892Google Scholar
  48. 48.
    Nakamura T, Takeuchi K (2003) Jpn Kokai Tokkyo Koho JP 2003064083 A 20030305Google Scholar
  49. 49.
    Nakamura T (2003) Jpn Kokai Tokkyo Koho JP 2003052400 A 20030225Google Scholar
  50. 50.
    Viaene K, Callant P (2002) U.S. Pat Appl Pub US 20020004185 A1 20020110Google Scholar
  51. 51.
    Berlman IB (1965) Handbook of fluorescence spectra of aromatic molecules, Academic PressGoogle Scholar
  52. 52.
    Parker CA (1968) Photoluminescence of Solutions. Elsevier Publishing Company, AmsterdamGoogle Scholar
  53. 53.
    Strickler SJ, Berg RA (1962) J Chem Phys 37:814CrossRefGoogle Scholar
  54. 54.
    Lippert EZ (1957) Elektrochem 61:962–975Google Scholar
  55. 55.
    Mataga N, Kaifu Y, Koizumi M (1956) Bull Chem Soc 29:465–470CrossRefGoogle Scholar
  56. 56.
    Reichardt C (1994) Chem Rev 94:2319–2348CrossRefGoogle Scholar
  57. 57.
    Reichardt C (1988) Solvents and Solvent Effects in Organic Chemistry, 2nd edn. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  58. 58.
    Subuddhi U, Haldar S, Sankararaman S, Mishra AK (2006) Photochem Photobiol Sci 5:459–566PubMedCrossRefGoogle Scholar
  59. 59.
    Kamlet MJ, Abboud JL, Taft RW (1977) J Am Chem Soc 99:6027–6038CrossRefGoogle Scholar
  60. 60.
    Kamlet MJ, Abboud JL, Abraham MH, Taft RW (1983) J Org Chem 48:2877–2887CrossRefGoogle Scholar
  61. 61.
    Mishra A, Behera GB, Krishna MMG, Periasamy N (2001) J Luminescence 92:175–188CrossRefGoogle Scholar
  62. 62.
    Sanborn ME, Connolly BK, Gurunathan K, Levitus M (2007) J Phys Chem B 111:11064–11074PubMedCrossRefGoogle Scholar
  63. 63.
    Huang Z, Ji D, Xia A (2005) Colloid Surface Physicochem Eng 257–258:203–209CrossRefGoogle Scholar
  64. 64.
    Demchuk MI, Ishchenko AA, Krasnaya ZhA, Mikhailov VP (1990) Chem Phys Lett 167:170–174Google Scholar
  65. 65.
    Karpovich DS, Blanchard GJ (1995) J Phys Chem B 99:3951–3958Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Digambara Patra
    • 1
  • Nagham N. Malaeb
    • 1
  • Makhluf J. Haddadin
    • 1
  • Mark J. Kurth
    • 2
  1. 1.Department of ChemistryAmerican University of BeirutBeirutLebanon
  2. 2.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations