Journal of Fluorescence

, Volume 22, Issue 1, pp 529–535 | Cite as

Investigation on the Micelle-Sensitized Ce (IV) - Lornoxicam-Rh B Chemiluminescence System and its Application

Original Paper


Based on the micelle synergism mechanism, a simple and sensitive flow injection chemiluminescence (FI-CL) method for the assay of lornoxicam was described. The CL signal generated from the reaction of Ce (IV) with lornoxicam in acidic solution was very weak, while the interfusion of sodium dodecyl benzene sulfonate (SDBS) resulted in a highly CL intensity. Under the optimum experimental conditions, the CL intensity was proportional to lornoxicam concentration over the range 1.0 × 10−10–7.3 × 10−8 g/mL with a detection limit of 4.9 × 10−11 g/mL (3σ). The relative standard deviation for 11 replicate measurements of 3.0 × 10−9 g/mL of lornoxicam was 1.9%. The proposed method was successfully applied for the assay of lornoxicam in pharmaceuticals, human serum and urine with excellent recovery. The possible mechanism of CL reaction was also discussed briefly.


Chemiluminescence Lornoxicam Ce (IV) Sodium dodecyl benzene sulfonate Rh B 



The authors gratefully acknowledge the financial support from Shihezi University.

Supplementary material

10895_2011_987_MOESM1_ESM.doc (252 kb)
ESM 1 (DOC 251 kb)


  1. 1.
    Radhofer-Welte S, Rabasseda X (2000) Lornoxicam, a new potent NSAID with an improved tolerability profile. Drugs Today 36:55–76PubMedGoogle Scholar
  2. 2.
    Balfour JA, Fitton A, Barradell LB (1996) Lornoxicam. A review of its pharmacology and therapeutic potential in the management of painful and inflammatory conditions. Drugs 51:639–657PubMedCrossRefGoogle Scholar
  3. 3.
    Olkkola KT, Brunetto AV, Mattila MJ (1994) Pharmacokinetics of oxicam nonsteroidal anti-inflammatory agents. Clin Pharmacokinet 26:107–120PubMedCrossRefGoogle Scholar
  4. 4.
    Vane JR, Botting RM (1998) Anti-inflammatory drugs and their mechanism of action. Inflamm Res 47:S78–S87PubMedCrossRefGoogle Scholar
  5. 5.
    Berg J, Christoph T, Widerna M, Bodenteich A (1997) Isoenzyme-specific cyclooxygenase inhibitors: a whole cell assay system using the human erythroleukemic cell line HEL and the human monocytic cell line Mono Mac6. J Pharmacol Toxicol Meth 37:179–186. doi: 10.1016/s1056-8719(97)00016-6 CrossRefGoogle Scholar
  6. 6.
    Berg J, Fellier H, Christoph T, Grarup J, Stimmeder D (1999) The analgesic NSAID lornoxicam inhibits cyclooxygenase (COX)-1/-2, inducible nitric oxide synthase (iNOS), and the formation of interleukin (IL)-6 in vitro. Inflamm Res 48:369–379. doi: 10.1007/s000110050474 PubMedCrossRefGoogle Scholar
  7. 7.
    Memiş D, Karamanlıoğlu B, Turan A, Koyuncu O, Pamukçu Z (2004) Effects of lornoxicam on the physiology of severe sepsis. Crit Care 8:R474–R482. doi: 10.1186/cc2969 PubMedCrossRefGoogle Scholar
  8. 8.
    Byrav PDS, Medhi B, Prakash A, Patyar S, Wadhwa S (2009) Lornoxicam: a newer NSAID. IJPMR 20:27–31Google Scholar
  9. 9.
    Skjodt NM, Davies NM (1998) Clinical pharmacokinetics of lornoxicam: a short half-life oxicam. Clin Pharmacokinet 34:421–428PubMedCrossRefGoogle Scholar
  10. 10.
    Taha EA, Salama NN, Abdel FLS (2006) Spectrofluorimetric and spectrophotometric stability-indicating methods for determination of some oxicams using 7-Chloro-4-nitrobenz-2-oxa-1, 3-diazole (NBD-Cl). Chem Pharma Bull 54:653–658. doi: 10.1248/cpb.54.653 CrossRefGoogle Scholar
  11. 11.
    Taha EA, El-Zanfally ES, Salama NN (2003) Ratio derivative spectrophotometric method for the determination of some oxicams in presence of their alkaline degradation products. Sci Pharm 71:303–320Google Scholar
  12. 12.
    Nemutlu E, Demircan S, Kir S (2005) Determination of lornoxicam in pharmaceutical preparations by zero and first order derivative UV spectrophotometric methods. Pharmazie 60:421–425PubMedGoogle Scholar
  13. 13.
    Venumadhav E, Neeha T, Bhargavi P, Nishat A, Swetha A, Rao GD (2010) New spectrophotometric methods for the determination of lornaxicam in pharmaceutical dosage forms. Int J Pharma Bio Sci 1:491–494Google Scholar
  14. 14.
    Singh B, Saini G, Sharma DNN, Roy SD, Gautam N (2011) Estimation of lornoxicam in tablet dosage form by UV spectrophotometric method. IJPSR 2(1):102–106Google Scholar
  15. 15.
    Ghoneim MM, Beltagi AM, Radi A (2002) Square-wave adsorptive stripping voltammetric determination of the anti-inflammatory drug lornoxicam. Anal Sci 18(2):183–186. doi: 10.2116/analsci.18.183 PubMedCrossRefGoogle Scholar
  16. 16.
    Ibrahim C, Nisa K, Sule A (2009) Polarographic determination of lornoxicam in pharmaceutical formulations. CBU J Sci 5:11–18Google Scholar
  17. 17.
    Patel DJ, Patel VP (2010) Simultaneous determination of paracetamol and lornoxicam in tablets by thin layer chromatography combined with densitometry. Int J Chem Tech Res 2:1929–1932Google Scholar
  18. 18.
    Taha EA, Salama NN, Abdel FLS (2004) Stability-indicating chromatographic methods for the determination of some oxicams. J AOAC Int 87:366–373PubMedGoogle Scholar
  19. 19.
    Patil KR, Rane VP, Sangshetti JN, Shinde DB (2009) Stability-indicating LC method for analysis of lornoxicam in the dosage form. Chromatographia 69:1001–1005. doi: 10.1365/s10337-009-0982-6 CrossRefGoogle Scholar
  20. 20.
    Radhofer-Weltea S, Dittrichb P (1998) Determination of the novel non-steroidal anti-inflammatory drug lornoxicam and its main metabolite in plasma and synovial fluid. J Chromatogr B 707:151–159. doi: 10.1016/s0378-4347(97)00597-5 CrossRefGoogle Scholar
  21. 21.
    Shah DA, Patel NJ, Baldania SL, Chhalotiya UK, Bhatt KK (2011) Stability indicating LC-method for estimation of paracetamol and lornoxicam in combined dosage form. Sci Pharm 79:113–122. doi: 10.3797/scipharm.1012-03 PubMedGoogle Scholar
  22. 22.
    Attimarad M (2010) Rapid RP HPLC method for quantitative determination of lornoxicam in tablet. J Basic Clin Pharma 1:115–118Google Scholar
  23. 23.
    Akiko N, Mihoko N, Mitsuhiro W, Kenichiro N (2005) Semi-micro column HPLC of three oxicam non-steroidal anti-inflammatory drugs in human blood. Bunseki Kagaku 54:755–760CrossRefGoogle Scholar
  24. 24.
    Sahoo M, Syal P, Ingale S, Ingale K, Sindhe S, Sali M, Choudhari VP, Kuchekar BS (2011) Development and validation of a RP-HPLC-PDA method for simultaneous determination of lornoxicam and thiocolchicoside in pharmaceutical dosage form and its application for dissolution study. Int J Res Pharm Sci 2:1–7Google Scholar
  25. 25.
    Suwa T, Urano H, Shinohara Y, Kokatsu J (1993) Simultaneous high performance liquid chromatographic determination of lornoxicam and its 5′-hydroxy metabolite in human plasma using electrochemical detection. J Chromatogr Biomed 617:105–110. doi: 10.1016/0378-4347(93)80427-6 CrossRefGoogle Scholar
  26. 26.
    Kim YH, Ji HY, Park ES, Chae SW, Lee HS (2007) Liquid chromatography-electrospray lonization tandem mass spectrometric determination of lornoxicam in human plasma. Arch Pharm Res 30:905–910. doi: 10.1007/BF02978844 PubMedCrossRefGoogle Scholar
  27. 27.
    Zeng YL, Chen XY, Zhang YF, Zhong DF (2004) Determination of lornoxicam in human plasma by LC/MS/MS. Pharmaceutica Sinica 39:132–135Google Scholar
  28. 28.
    Mervartová K, Polášek M, Calatayud JM (2007) Recent applications of flow-injection and sequential-injection analysis techniques to chemiluminescence determination of pharmaceuticals. J Pharmaceut Biomed 45:367–381. doi: 10.1016/j.jpba.2007.08.018 CrossRefGoogle Scholar
  29. 29.
    Adcock JL, Francis PS, Barnett NW (2007) Acidic potassium permanganate as a chemiluminescence reagent-A review. Anal Chim Acta 601:36–67. doi: 10.1016/j.aca.2007.08.027 PubMedCrossRefGoogle Scholar
  30. 30.
    Bostick DT, Hercules DM (1975) Quantitative determination of blood glucose using enzyme induced chemiluminescence of luminol. Anal Chem 47:447–452. doi: 10.1021/ac60353a039 PubMedCrossRefGoogle Scholar
  31. 31.
    Malavolti NL, Pilosof D, Nieman TA (1985) Determination of cholesterol with a microporous membrane chemiluminescence cell with cholesterol oxidase in solution. Anal Chim Acta 170:199–207. doi: 10.1016/s0003-2670(00)81743-2 CrossRefGoogle Scholar
  32. 32.
    Zhao F, Bian L (2010) Cerium (IV)-based chemiluminescence of felodipine sensitized by rhodamine 6 G. Instrum Sci Technol 38:366–375. doi: 10.1080/10739149.2010.509141 CrossRefGoogle Scholar
  33. 33.
    Wolkoff AW, Larose RH (1975) Separation and detection of low concentrations of polythionates by high speed anion exchange liquid chromatography. Anal Chem 47:1003–1008. doi: 10.1021/ac60357a009 CrossRefGoogle Scholar
  34. 34.
    Kamruzzaman M, Alam AM, Ferdous T, Lee SH, Kim YH, Kim SH (2011) Ultrasensitive study of gatifloxacin based on its enhancing effect on the cerium (IV)-sodium hyposulfite chemiluminescence reaction in a micellar medium. J Fluoresc 21:1539–1545. doi: 10.1007/s10895-011-0842-2 PubMedCrossRefGoogle Scholar
  35. 35.
    Kenner CT, Busch KW (1979) Quantitative analysis. Macmillan, New YorkGoogle Scholar
  36. 36.
    Job P (1928) Formation and stability of inorganic complexes in solution. Ann Chim 9:113–113Google Scholar
  37. 37.
    Cheng XL, Zhao LX, Lin JM (2006) Chemiluminescence of ClO3- - SO32- - Rh6G-SDBS system and its application to the determination of sulfite. Chinese J Chem 24:65–71. doi: 10.1002/cjoc.200690023 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShihezi UniversityShiheziPeople’s Republic of China
  2. 2.Xinjiang Bintuan Key lab of Chemical Engineering for Green ProcessShiheziPeople’s Republic of China
  3. 3.School of PharmacyXinjiang Medical UniversityUrumqiPeople’s Republic of China

Personalised recommendations