Advertisement

Journal of Fluorescence

, Volume 22, Issue 1, pp 155–162 | Cite as

Pyrrole Based Schiff Bases as Colorimetric and Fluorescent Chemosensors for Fluoride and Hydroxide Anions

  • Sivan Velmathi
  • Vijayaraghavan Reena
  • Sivalingam Suganya
  • Sambandam Anandan
Original Paper

Abstract

An efficient colorimetric sensor with pyrrole-NH moiety as binding site and nitro group as a signaling unit has been synthesized by a one step procedure and characterized by spectroscopic techniques, which displays excellent selectivity and sensitivity for fluoride and hydroxide ions. The hydrogen bonding with these anions provides remarkable colorimetric responses. 1H NMR and FT IR studies has been carried out to confirm the hydrogen bonding. UV–vis and fluorescence spectral changes can be exploited for real time and on site application.

Keywords

Schiff base Pyrrole Fluoride and hydroxide ions Sensors UV–vis spectroscopy Fluorescence 

Notes

Acknowledgements

Author S.V expresses her thanks to Dr. M. Chidambaram, Former Director, NIT Tiruchirappalli for his constant support and encouragement and DST Nanomission project for financial assistance. V. Reena expresses her thanks to BIOCON India Ltd, Bangalore for extending their research facilities for the synthesis and charecterisation of receptors.

Supplementary material

10895_2011_942_MOESM1_ESM.docx (1.9 mb)
ESM. 1  (DOCX 1988 kb)

References

  1. 1.
    Amendola V, Esteban-Gomez D, Fabbrizzi L, Licchelli M (2006) What anions do to N-H containing receptors. Acc Chem Res 39(5):343–353PubMedCrossRefGoogle Scholar
  2. 2.
    Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspective. Angew Chem Int Ed 40:486–516CrossRefGoogle Scholar
  3. 3.
    Huang K, Yang H, Zhou Z, Yu M, Li F, Gao X, Yi T, Huang C (2008) Multisignal chemosensor for Cr3+ and its application in bioimaging. Org Lett 10:2557–2560PubMedCrossRefGoogle Scholar
  4. 4.
    Czarnik AW (1995) Desperately seeking sensors. Chem Biol 2:423–428PubMedCrossRefGoogle Scholar
  5. 5.
    Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549PubMedCrossRefGoogle Scholar
  6. 6.
    Kirk KL (1991) Biochemistry of halogens and inorganic halides. Plenum Press, New YorkGoogle Scholar
  7. 7.
    Chen CF, Chen QY (2006) Azocalix [4]arene-based chromogenic anion probes. New J Chem 30:143–147CrossRefGoogle Scholar
  8. 8.
    Libra ER, Scott MJ (2006) Metal salen complexes incorporating triphenoxy methanes: efficient, size selective anion binding by phenolic donors with a visual report. Chem Commun 14:1485–1487CrossRefGoogle Scholar
  9. 9.
    Channa A, Steed AW (2005) Anion and cation binding by a pendant arm cyclam and its macrobicyclic derivatives. Dalton Trans 14:2455–2461PubMedCrossRefGoogle Scholar
  10. 10.
    Ghosh S, Choudhury AR, Row TNG, Maitra U (2005) Selective and unusal fluoride ion complexation by a steroidal receptor using OH…F- and CH…F- interactions: a new motif for anion coordination. Org Lett 7:1441–1444PubMedCrossRefGoogle Scholar
  11. 11.
    Lee KH, Lee HY, Lee DH, Hong JI (2001) Fluoride-selective chromogenic sensors based on azophenol. Tetrahedron Lett 42:5447–5449CrossRefGoogle Scholar
  12. 12.
    Lee C, Lee DH, Hong JI (2001) Colorimetric anion sensing by porphyrin-based anion receptor. Tetrahedron Lett 42:8665–8668CrossRefGoogle Scholar
  13. 13.
    Devaraj S, Saravanakumar D, Kandaswamy M (2007) Dual chemosensing properties of new anthroquinone-based receptors toward fluoride ions. Tetrahedron Lett 48:3077–3081CrossRefGoogle Scholar
  14. 14.
    Saravanakumar D, Devaraj S, Kanakaraj SI, Kandaswamy M (2008) Schiff’s Base phenol-hydrazone derivatives as colorimetric chemo sensors for fluoride ions. Tetrahedron Lett 49:127–132CrossRefGoogle Scholar
  15. 15.
    Sivakumar R, Reena V, Ananthi N, Babu M, Anandhan S, Velmathi S (2010) Colorimetric and fluorescence sensing of fluoride anions with potential salicylaldimine based Schiff base receptors. Spectrochimica Acta Part A 75:1146–1151CrossRefGoogle Scholar
  16. 16.
    Zhang X, Guo L, Wu FY, Jiang YB (2003) Development of fluorescent sensing of anions under Excited-State Intermolecular Proton Transfer Signaling Mechanism. Org Lett 5:2667–2670PubMedCrossRefGoogle Scholar
  17. 17.
    Lee DH, Lee KH, Hong JI (2001) An azophenol-based chromogenic anion sensor. Org Lett 3:5–8PubMedCrossRefGoogle Scholar
  18. 18.
    Lee DH, Lee HY, Lee KH, Hong JI (2001) Selective anion sensing based on a dual-chromophore approach. Chem Commun 13:1188–1189CrossRefGoogle Scholar
  19. 19.
    Gale PA (2005) Amidopyrroles :from anion receptors to membrane transport agents. Chem Commun 30:3761–3772CrossRefGoogle Scholar
  20. 20.
    Kim SK, Bok JH, Bartsch RA, Lee JY, Kim JS (2005) A fluoride –selective PCT chemosensor based on formation of a Pyrene excimer. Org Lett 7:4839–4842PubMedCrossRefGoogle Scholar
  21. 21.
    Camiolo S, Gale PA, Hursthouse MB, Light ME, Warriner CN (2003) 2,5 –Diamidofuran anion receptors. Tetrahedron Lett 44:1367–1369CrossRefGoogle Scholar
  22. 22.
    Descalzo AB, Rurack K, Weisshoff H, Martinez-Manez R, Marcos MD, Amoros P, Hoffmann K, Soto J (2005) Rational design of a chromo-and fluorogenic hybrid chemosensor material for the detection of long-chain carboxylates. J Am Chem Soc 127:184–200PubMedCrossRefGoogle Scholar
  23. 23.
    Esteban-Gomez D, Fabbrizzi L, Liechelli M (2005) Why, on interaction of urea-based receptors with fluoride, beautiful colour develop? J Org Chem 70:5717–5720PubMedCrossRefGoogle Scholar
  24. 24.
    Cho EJ, Ryu BJ, Lee YJ, Nam KC (2005) Visible colorimetric fluoride ion sensors. Org Lett 7:2607–2609PubMedCrossRefGoogle Scholar
  25. 25.
    Cho EJ, Moon JW, Ko SW, Lee JY, Kim SK, Yoon J, Nam KC (2003) A new fluoride selective fluorescent as well as chromogenic chemosensor containing a naphthalene urea derivative. J Am Chem Soc 125:12376–12377PubMedCrossRefGoogle Scholar
  26. 26.
    Gunnlaugsson T, Kruger PE, Jensen P, Tierney J, Ali HDP, Hussey GM (2005) Colorimetric “naked eye” sensing of anions in aqueous solution. J Org Chem 70:10875–10878PubMedCrossRefGoogle Scholar
  27. 27.
    Gomez DE, Fabbrizzi L, Licchelli M, Monzani E (2005) Urea vs. thiourea in anion recognition. Org Biomol Chem 3:1495–1500PubMedCrossRefGoogle Scholar
  28. 28.
    Jose DA, Kumar DK, Ganguly B, Das A (2004) Efficient and simple colorimetric fluoride ion sensor based on receptor having urea and thiourea binding sites. Org Lett 6:3445–3448PubMedCrossRefGoogle Scholar
  29. 29.
    Jose DA, Kumar DK, Ganguly B, Das A (2005) Urea and thiourea based efficient colorimetric sensors for oxyanions. Tetrahedron Lett 46:5343–5346CrossRefGoogle Scholar
  30. 30.
    Lee DH, Im JH, Lee JH, Hong JI (2002) A new flurescent fluoride chemosensor based on conformational restriction of a biaryl flurophore. Tetrahedron Lett 43:9637–9640CrossRefGoogle Scholar
  31. 31.
    Sessler JL, Camiolo S, Gale PA (2003) Pyrrolic and polypyrrolic anion binding agents. Coord Chem Rev 240:17–55CrossRefGoogle Scholar
  32. 32.
    Guo Y, Shao SJ, Xu J, Shi YP, Jiang SX (2004) A selective colorimetric anion sensor based on Di(hydroxymethyl) Di-(2-pyrrolyl)methane -TCBQ system. Chinese Chemical Lett 15:1117–1119Google Scholar
  33. 33.
    Kim MH, Jang HH, Yi S, Chang SK, Han MS (2009) Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ ions. Chem Commun 32:4838–4840CrossRefGoogle Scholar
  34. 34.
    Li HY, Gao S, Xi Z (2009) A Colorimetric and “turn-on chemosensor for Zn(II) based on coumarin shiff- base derivative. Inorg Chem Commun 12:300–303CrossRefGoogle Scholar
  35. 35.
    Gale PA, Twyman LJ, Handlin CI, Sessler JL (1999) A Colorimetric calix [4] pyrrole-4-nitrophenolate based anion sensor. Chem Commun 18:1851–1852CrossRefGoogle Scholar
  36. 36.
    Lin C, Selvi S, Fang J, Chou U, Lai JH, Cheng YM (2007) Pyreno [2,1-b] pyrrole and Bis (Pyreno[2,1-b]pyrrole) as selective chemosensors of fluoride ion: a mechanistic study. J Org Chem 72:3537–3542PubMedCrossRefGoogle Scholar
  37. 37.
    Anzenbacher P, Palacious MA, Jursikova K, Marquez M (2005) Simple electrooptical sensors for inorganic anions. Org Lett 7:5027–5030PubMedCrossRefGoogle Scholar
  38. 38.
    Mizuno T, Wei WH, Eller LR, Sessler JL (2002) Phenanthroline complexes bearing fused dipyrrolylquinoxaline anion recognition sites: efficient fluoride anion receptors. J Am Chem Soc 124:1134–1135PubMedCrossRefGoogle Scholar
  39. 39.
    Kubo Y, Ishida T, Kobayashi A, James TD (2005) Fluorescent alizarin–phenylboronic acid ensembles: design of self-organized molecular sensors for metal ions and anions. J Mater Chem 15:2889–2895CrossRefGoogle Scholar
  40. 40.
    Thiagarajan V, Ramamurthy P, Thirumalai D, Ramakrishnan VT (2005) A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways. Org Lett 7:657–660PubMedCrossRefGoogle Scholar
  41. 41.
    Jones RA, Quintanilla-Lopez G, Taheri SAN, Hania MM, Öztürk O, and (inpart) Zuilhof H (2000) Pyrrole studies part 47. 13C NMR spectroscopic characterisation of the products of the reaction of formyl pyrroles with aniline and diaminobenzenes. ARKIVOC 1 (Part 3):382–392Google Scholar
  42. 42.
    Munro OQ, Strydom SO, Grimme CD (2004) Complementary hydrogen bonding in a new tridentate Schiff base ligand: X-ray, DFT and solution NMR studies. New J Chem 28:34–42CrossRefGoogle Scholar
  43. 43.
    Miyaji H, Sato W, Sessler JL (2001) Off-the-shelf colorimetric anion sensors. Angew Chem Int Ed 40:154–157CrossRefGoogle Scholar
  44. 44.
    Hammud HH, Ghannoum A, Masoud MS (2006) Spectral regression and correlation coefficients of some benzaldimines and salicylaldimines in different solvents, Spectrochim. Acta Part A 63:255–265CrossRefGoogle Scholar
  45. 45.
    Shao S, Guo Y, He L, Jiang S, Yu X (2003) New non-covalent charge complex of calix [4] pyrrole-chloranil: as a potential colorimetric anion sensor. Tetrahedron Lett 44:2175–2178CrossRefGoogle Scholar
  46. 46.
    Descalzo AB, Jimenez D, Marcos MD, Martinez-Manez R, Soto J, El Haskouri J, Guillem C, Beltran D, Amoros P, Borrachero MV (2002) A new approach to chemosensors for anions using mcm-41 grafted with amino groups. Adv Mater 14:966–969Google Scholar
  47. 47.
    Yu HT, Colucci WJ, Mclaughlin ML, Bukley MD (1992) Fluorescence quenching in indoles by excited-state proton transfer. J Am Chem Soc 114:8449–8454CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sivan Velmathi
    • 1
  • Vijayaraghavan Reena
    • 1
  • Sivalingam Suganya
    • 1
  • Sambandam Anandan
    • 2
  1. 1.Organic and Polymer Synthesis Laboratory, Department of ChemistryNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Nanomaterials & Solar Energy Conversion Laboratory, Department of ChemistryNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations