Journal of Fluorescence

, 21:2213 | Cite as

Solvent Effect Profiles of Absorbance and Fluorescence Spectra of Some Indole Based Chalcones

  • Manju Kumari Saroj
  • Neera Sharma
  • Ramesh C. Rastogi
Original Paper


The photophysical properties of a series of 3-(1′H-Indol-3′-yl)-1-phenylprop-2-en-1-one and its derivatives (indole chalcones) were studied in different solvents. Solvent effects on the absorption and fluorescence spectra were quantified using Reichardt’s and bulk solvent polarity parameters and were complemented by the results of the Kamlet-Taft treatment. The observed excited state dipole moment was found to be larger than the ground state dipole moment of these chalcones. The correlation of the solvatochromic Stokes-shifts with the microscopic solvent polarity parameter (\( E_T^N \)) was found to be superior to that obtained using bulk solvent polarity functions.


Dipole moment Onsager radius Polarity Excited state Solvatochromism 



The financial support from University of Delhi under the Scheme “To strengthen R & D Doctoral Research Program” is gratefully acknowledged. Manju K. Saroj is thankful to the University Grants Commission (UGC), New Delhi for the financial assistance. The authors thank the Institute of Genomics and Integrative Biology (IGIB, CSIR), Delhi for providing access to its Central Instrumentation Facility.


  1. 1.
    Eisenhart JM, Ellis AB (1985) Perturbation of the excited-state properties of trans, trans-1,5-bis[4-(dimethylamino) phenyl]-1,4-pentadien-3-one through adduct formation and silica gel adsorption. J Org Chem 50(21):4108–4113CrossRefGoogle Scholar
  2. 2.
    Jiang YB, Wang XJ, Lin L (1994) Fluorescent probing of the restriction by aqueous micelles of the formation of the photoinduced biradical state P* of 4-(dimethy1amino) chalcone. J Phys Chem 98(47):12367–12372CrossRefGoogle Scholar
  3. 3.
    Wang P, Wu S (1995) Spectroscopy and photophysics of bridged enone derivatives: effect of molecular structure and solvent. J Photochem Photobiol A Chem 86(1–3):109–113CrossRefGoogle Scholar
  4. 4.
    Matsushima R, Mizuno H, Itoh H (1995) Photochromic properties of 4′-amino-substituted 2-hydroxychalcones. J Photochem Photobiol A Chem 89(3):251–256CrossRefGoogle Scholar
  5. 5.
    Gaber M, El-Sayed YS, Diab H (2011) Spectral behavior study of 3-(4-dimethylamino-phenyl)-1-6-[3-(4-dimethylamino-phenyl)-acryloyl]-pyridin-2-yl- propanone. Opt Laser Technol 43(3):592–598CrossRefGoogle Scholar
  6. 6.
    Nielsen SB, Christensen SF, Cruciani G, Kharazmi A (1998) Antileishmanial chalcones: statistical design, synthesis and three-dimensional quantitative structure-activity relationship analysis. J Med Chem 41(24):4819–4832PubMedCrossRefGoogle Scholar
  7. 7.
    Liu X, Go ML (2007) Antiproliferative activity of chalcones with basic functionalities. Bioorg Med Chem 15(22):7021–7034PubMedCrossRefGoogle Scholar
  8. 8.
    Batovska D, Parushev S, Stamboliyska B, Tsvetkova I, Ninova M, Najdenski H (2009) Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur J Med Chem 44(5):2211–2218PubMedCrossRefGoogle Scholar
  9. 9.
    Perez-Vizcaino F, Duarte J (2010) Flavonols and cardiovascular disease. Mol Aspect Med 31(6):478–494CrossRefGoogle Scholar
  10. 10.
    Song DM, Jung KH, Moon JH, Shin DM (2002) Photochemistry of chalcone and the application of chalcone-derivatives in photo-alignment layer of liquid crystal display. Opt Mater 21(1–3):667–671Google Scholar
  11. 11.
    Shin DM, Song DM, Kim YB (2004) Photochemical reaction on the polymer layer for liquid crystal display. Mater Sci Eng C 24(1–2):127–130CrossRefGoogle Scholar
  12. 12.
    Guo M, Wang X (2009) Polyimides with main-chain photosensitive groups: synthesis, characterization and their properties as liquid crystal alignment layers. Eur Polym J 45(3):888–898CrossRefGoogle Scholar
  13. 13.
    El-Sayed YS, El-Daly SA, Gaber M (2010) Spectral behavior and laser activity of 3-(4′-dimethylaminophenyl)-1-(1H-pyrrol-2-yl) prop-2-en-1-one (DMAPrP) a new laser dye. Opt Laser Technol 42(2):397–402CrossRefGoogle Scholar
  14. 14.
    Meric B, Kerman K, Ozkan D (2002) Electrochemical biosensor for the interaction of DNA with the alkylating agent 4,4′-dihydroxy chalcone based on guanine and adenine signals. J Pharm Biomed Anal 30(4):1339–1346PubMedCrossRefGoogle Scholar
  15. 15.
    Keri RS, Hosamani KM, Shingalapur RV, Hugar MH (2010) Analgesic, anti-pyretic and DNA cleavage studies of novel pyrimidine derivatives of coumarin moiety. Eur J Med Chem 45(6):2597–2605PubMedCrossRefGoogle Scholar
  16. 16.
    Morkunas I, Narozna D, Nab W, Nowak SS, Remlein-Starosta D (2011) Cross-talk interactions of sucrose and fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine. J Plant Physiol 168(5):424–433PubMedCrossRefGoogle Scholar
  17. 17.
    Marcotte N, Ferry-Forgues S, Lavabre D (1999) Spectroscopic study of a symmetrical bis crown fluoroionophore of the diphenylpentadienone series. J Phys Chem A 103(17):3163–3170CrossRefGoogle Scholar
  18. 18.
    Rurack K, Bricks JL, Reck G, Radeglia R, Resch-Genger U (2000) Chalcone-analogue dyes emitting in the near-infrared (NIR): influence of donor-acceptor substitution and cation complexation on their spectroscopic properties and x-ray structure. J Phys Chem A 104(14):3087–3109CrossRefGoogle Scholar
  19. 19.
    Ichimura C, Shiraishi Y, Hirai T (2011) Cu (II)-selective fluorescence of a bis-quinolylimine derivative. J Photochem Photobiol A Chem 217(1):253–258CrossRefGoogle Scholar
  20. 20.
    Kumar D, Kumar NM, Akamatsu K, Kusaka E, Harada H, Ito T (2010) Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg Med Chem Lett 20(13):3916–3919PubMedCrossRefGoogle Scholar
  21. 21.
    Rani P, Srivastava VK, Kumar A (2004) Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur J Med Chem 39(5):449–452PubMedCrossRefGoogle Scholar
  22. 22.
    Maria K, Dimitra HL, Maria G (2008) Synthesis and anti-inflammatory activity of chalcones and related mannich bases. Med Chem 4(6):586–596PubMedCrossRefGoogle Scholar
  23. 23.
    Cocconcelli G, Diodato E, Caricasole A, Gaviraghi G, Genesio E, Ghiron C, Magnoni L, Pecchioli E, Plazzib PV, Terstappen GC (2008) Aryl azoles with neuroprotective activity-parallel synthesis and attempts at target identification. Bioorg Med Chem 16(4):2043–2052PubMedCrossRefGoogle Scholar
  24. 24.
    Budakoti A, Bhat AR, Athar F, Azam A (2008) Syntheses and evaluation of 3-(3-bromo phenyl)-5-phenyl-1-(thiazolo [4,5-b] quinoxaline-2-yl)-2-pyrazoline derivatives. Eur J Med Chem 43(8):1749–1757PubMedCrossRefGoogle Scholar
  25. 25.
    Cui M, Ono M, Kimura H, Liu BL, Saji H (2011) Synthesis and biological evaluation of indole-chalcone derivatives as β-amyloid imaging probe. Bioorg Med Chem Lett 21(3):980–982PubMedCrossRefGoogle Scholar
  26. 26.
    Gaikwad P, Priyadarsini KI, Naumov S, Rao BSM (2010) Radiation and quantum chemical studies of chalcone derivatives. J Phys Chem A 114(30):7877–7885PubMedCrossRefGoogle Scholar
  27. 27.
    Yesuthangam Y, Pandian S, Venkatesan K, Gandhidasan R, Murugesan R (2011) Photogeneration of reactive oxygen species and photoinduced plasmid DNA cleavage by novel synthetic chalcones. J Photochem Photobiol B Biol 102(3):200–208CrossRefGoogle Scholar
  28. 28.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Plenum, New YorkCrossRefGoogle Scholar
  29. 29.
    Sowmiya M, Tiwari AK, Saha SK (2011) Study on intramolecular charge transfer fluorescence properties of trans-4-[4′-(N, N′-dimethylamino) styryl] pyridine: effect of solvent and pH. J Photochem Photobiol A Chem 218(1):76–86CrossRefGoogle Scholar
  30. 30.
    Melavanki RM, Patil NR, Kapatkar SB, Ayachit NH, Umapathy S, Thipperudrappa J, Nataraju AR (2011) Solvent effect on the spectroscopic properties of 6MAMC and 7MAMC. J Mol Liq 158(2):105–110CrossRefGoogle Scholar
  31. 31.
    Tsukerman SV, Bugai AI, Lavrushin VF (1972) Electronic spectra of α, β-unsaturated ketones–indole derivatives. Khim Geterotsikl Soedin 7:949–953Google Scholar
  32. 32.
    Fuini JF, Surampudi AB, Penick MA, Mahindaratne MPD, Negrete GR, Brancaleon L (2011) The photophysical characterisation of novel 3,9-dialkyloxy- and diacyloxyperylenes. Dye Pigment 88(2):204–211CrossRefGoogle Scholar
  33. 33.
    Guzow K, Szabelski M, Karolczak J, Wiczk W (2005) Solvatochromism of 3-[2-(aryl) benzoxazol-5-yl]alanine derivatives. J Photochem Photobiol A Chem 170(3):215–223CrossRefGoogle Scholar
  34. 34.
    Sharma VK, Sahare PD, Rastogi RC (2003) Excited state characteristics of acridine dyes: acriflavine and acridine orange. Spectrochim Acta A 59(8):1799–1804CrossRefGoogle Scholar
  35. 35.
    Sharma N, Jain SK, Rastogi RC (2003) Excited-state dipole moments of indoles using solvatochromic shift methods: an experimental and theoretical study. Bull Chem Soc Jpn 76(9):1741–1746CrossRefGoogle Scholar
  36. 36.
    Kumar S, Rao VC, Rastogi RC (2001) Excited-state dipole moments of some hydroxyl coumarin dyes using an efficient solvatochromic method based on the solvent polarity parameter \( E_T^N \). Spectrochim Acta A 57(1):41–47CrossRefGoogle Scholar
  37. 37.
    Kumar S, Jain SK, Sharma N, Rastogi RC (2001) Intramolecular excited-state proton-transfer studies on flavones in different environments. Spectrochim Acta A 57(2):299–308CrossRefGoogle Scholar
  38. 38.
    Kumar S, Jain SK, Rastogi RC (2001) An experimental and theoretical study of excited-state dipole moments of some flavones using an efficient solvatochromic method based on the solvent polarity parameter \( E_T^N \). Spectrochim Acta A 57(2):291–298CrossRefGoogle Scholar
  39. 39.
    Dash N, Krishnamoorthy G (2010) Photophysics of 2-(4′-N, N-dimethylaminophenyl) imidazo [4,5-b] pyridine in micelles: selective dual fluorescence in sodium dodecylsulphate and triton X-100. J Fluoresc 20(1):135–142PubMedCrossRefGoogle Scholar
  40. 40.
    Sharma N, Jain SK, Rastogi RC (2008) Solubilization of 5-methoxy tryptamine molecular probes in CTAB and SDS micelles: a CMC and binding constant study. Spectrochim Acta A 69(3):748–756CrossRefGoogle Scholar
  41. 41.
    Sharma N, Jain SK, Rastogi RC (2007) Effect of CTAB and SDS micelles on the excited state equilibria of some indole probes. Spectrochim Acta A 68(3):927–941CrossRefGoogle Scholar
  42. 42.
    Tsukerman SV, Bugai AI, Nikitchenko VM, Lavrushin VF (1970) Synthesis of unsaturated ketones and derivatives of 2-pyrazoline containing an indole nucleus. Khim Geterotsikl Soedin 6(3):399–403Google Scholar
  43. 43.
    Bilot L, Kawski A (1962) Theory of the effect of solvents on the electron spectra of molecules. Z Naturforsch 17a:621–627Google Scholar
  44. 44.
    Bilot L, Kawski A (1963) Effect of the solvent on the electronic spectrum of luminescent molecules. Z Naturforsch 18a:10–15Google Scholar
  45. 45.
    Bilot L, Kawski A (1963) Dipole moments of some phthalimide derivatives in the first excited singlet state. Z Naturforsch 18a:256Google Scholar
  46. 46.
    Kawski A (1992) Progress in photochemistry and photophysics, vol. V. CRC, Boca Raton, pp 1–47Google Scholar
  47. 47.
    Kawski A (1964) Effect of polar molecules on electronic spectrum on 4-amino-phthalimide. Acta Phys Polon 25(2):285–290Google Scholar
  48. 48.
    Kawski A (1965) Abnormal stokes shift of the absorption and of the fluorescence maximum of 4-aminophthalimide in dioxane-water mixtures. Acta Phys Polon 28(5):647–652Google Scholar
  49. 49.
    Kawski A, Stefanowska U (1965) The anomalous red shift of the absorption and fluorescence spectra of 4-aminophthalimide in dependence on the ratio of homo- and heteropolar solvents. Acta Phys Polon 28(6):809–822Google Scholar
  50. 50.
    Kawski A (2002) On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Z Naturforsch 57a(5):255–262Google Scholar
  51. 51.
    Kawski A, Kuklinski B, Bojarski P (2007) Excited state dipole moments of 4-(dimethylamino)benzaldehyde. Chem Phys Lett 448(4–6):208–212CrossRefGoogle Scholar
  52. 52.
    Ooshika Y (1954) Absorption spectra of dyes in solution. J Phys Soc Japan 9(4):594–602CrossRefGoogle Scholar
  53. 53.
    McRae EG (1957) Theory of solvent effects on molecular electronic spectra frequency shifts. J Phys Chem 61:562–572CrossRefGoogle Scholar
  54. 54.
    Lippert E (1957) Spectroscopic determination of the dipole moment of aromatic compounds in the first excited singlet state. Z Elektrochem Angew Phys Chem 61:962–975Google Scholar
  55. 55.
    Bakhshiev NG (1961) Universal intermolecular interactions and their effect on the position of the electronic spectra of the molecules in two-component solutions. I. Theory (liquid solutions). Opt Spectrosc 10:717–726Google Scholar
  56. 56.
    Bakhshiev NG (1964) Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions VII theory (general case of an isotropic solution). Opt Spectrosc 16(5):821–832Google Scholar
  57. 57.
    Liptay W (1965) Solvent–dependence of the wave number of electron bands and physicochemical fundamentals. Z Naturforsch 20a(11):1441–1471Google Scholar
  58. 58.
    Ravi M, Samanta A, Radhakrishnan TP (1994) Excited state dipole moments from an efficient analysis of solvatochromic stokes shift data. J Phys Chem 98(37):9133–9136CrossRefGoogle Scholar
  59. 59.
    Reichardt C (1988) Solvents and solvent effects in organic chemistry. VCH, WeinheimGoogle Scholar
  60. 60.
    Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358CrossRefGoogle Scholar
  61. 61.
    Hermant RM, Bakker NAC, Scherer T, Krijnen B, Verhoeven JW (1990) Systematic study of a series of highly fluorescent rod-shaped donor-acceptor systems. J Am Chem Soc 112(3):1214–1221CrossRefGoogle Scholar
  62. 62.
    HyperChem Release 5.1, Hypercube, Inc, USA, 1997Google Scholar
  63. 63.
    Kamlet MJ, Abboud JM, Taft RW (1981) Progress in physical organic chemistry, vol. 13. Wiley, New York, pp 485–630CrossRefGoogle Scholar
  64. 64.
    Mataga N, Kubata T (1970) Molecular interactions and electronic spectra. Marcel Dekker, New YorkGoogle Scholar
  65. 65.
    Abboud JM, Kamlet MJ, Taft RW (1977) Regarding a generalized scale of solvent polarities. J Am Chem Soc 99(25):8325–8327CrossRefGoogle Scholar
  66. 66.
    Kamlet MJ, Taft RW (1976) The Solvatochromic comparison method. I. The β scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 98(2):377–383CrossRefGoogle Scholar
  67. 67.
    Kamlet MJ, Taft RW (1979) Linear solvation energy relationships. Part 3. Some reinterpretations of solvent effects based on correlations with solvent π* and α values. J Chem Soc Perkin Trans 2(3):349–356Google Scholar
  68. 68.
    Lagalante AF, Jacobson RJ, Bruno TJ (1996) UV/Vis spectroscopic evaluation of 4-nitropyridine N-oxide as a solvatochromic indicator for the hydrogen-bond donor ability of solvents. J Org Chem 61(18):6404–6406PubMedCrossRefGoogle Scholar
  69. 69.
    Taft RW, Abboud JLM, Kamlet MJ (1981) Linear solvation energy relationships. 12. The dδ term in the solvatochromic equations. J Am Chem Soc 103(5):1080–1086CrossRefGoogle Scholar
  70. 70.
    Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α and β, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48(17):2877–2887CrossRefGoogle Scholar
  71. 71.
    Blanco SE, Ferretti FH (1998) Determination of absorptivity and formation constant of a chalcone association complex. Talanta 45(6):1103–1109PubMedCrossRefGoogle Scholar
  72. 72.
    Sharma N, Jain SK, Rastogi RC (2007) Solvatochromic study of excited state dipole moments of some biologically active indoles and tryptamines. Spectrochim Acta A 66(1):171–176CrossRefGoogle Scholar
  73. 73.
    Etaiw SEH, Awad MK, Fayed TA, El-Hendawy MM (2009) Effect of N-methylation on both ground and excited states properties of 1-(9-anthryl)-2-(2-benzothiazolyl) ethane. J Mol Struct 919(1–3):12–20CrossRefGoogle Scholar
  74. 74.
    Al-Ansari IAZ (1997) Ground- and excited-state properties of some 3,4-dihydro-1-(2-p-substituted benzylidene) naphthalenones: substituent and environmental effects. J Phys Org Chem 10(9):687–696CrossRefGoogle Scholar
  75. 75.
    Sonoda Y, Tsuzuki S, Goto M, Tohnai N, Yoshida M (2010) Fluorescence spectroscopic properties of nitro-substituted diphenylpolyenes: effects of intramolecular planarization and intermolecular interactions in crystals. J Phys Chem A 114(1):172–182PubMedCrossRefGoogle Scholar
  76. 76.
    Fayed TA, Awad MK (2004) Dual emission of chalcone-analogue dyes emitting in the red region. Chemical Phys 303(3):317–326CrossRefGoogle Scholar
  77. 77.
    El-Daly SA, Gaber M, Al-Shihry SS, El Sayed YS (2008) Photophysical properties, excitation energy transfer and laser activity of 3-(4′-dimethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one (DMAPP): a new potential laser dye. J Photochem Photobiol A Chem 195(1):89–98CrossRefGoogle Scholar
  78. 78.
    Lide DR (ed) (2005) CRC handbook of chemistry and physics, 85th edn. CRC, Boca Raton, pp 10–193Google Scholar
  79. 79.
    Bolz I, May C, Spange S (2007) Solvatochromic properties of Schiff bases derived from 5-aminobarbituric acid: chromophores with hydrogen bonding patterns as components for coupled structures. New J Chem 31(9):1568–1571CrossRefGoogle Scholar
  80. 80.
    Gustavsson T, Cassara L, Gulbinas V, Gurzadyan G, Mialocq JC, Pommeret S, Sorgius M, Meulen PV (1998) Femtosecond spectroscopic study of relaxation processes of three amino-substituted coumarin dyes in methanol and dimethyl sulfoxide. J Phys Chem A 102(23):4229–4245CrossRefGoogle Scholar
  81. 81.
    Saha SK, Purkayastha P, Dasb AB (2008) Photophysical characterization and effect of pH on the twisted intramolecular charge transfer fluorescence of trans-2-[4-(dimethylamino) styryl] benzothiazole. J Photochem Photobiol A Chem 195(2–3):368–377CrossRefGoogle Scholar
  82. 82.
    Li M, Huangb J, Zhoub X, Luoa H (2010) Synthesis, characterization and spectroscopic investigation of a novel phenylhydrazone schiff base with solvatochromism. Spectrochim Acta A 75(2):753–759CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Manju Kumari Saroj
    • 1
  • Neera Sharma
    • 1
  • Ramesh C. Rastogi
    • 1
  1. 1.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations