Journal of Fluorescence

, 21:2057 | Cite as

Uptake of FITC Labeled Silica Nanoparticles and Quantum Dots by Rice Seedlings: Effects on Seed Germination and Their Potential as Biolabels for Plants

  • Remya Nair
  • Aby C. Poulose
  • Yutaka Nagaoka
  • Yasuhiko Yoshida
  • Toru Maekawa
  • D. Sakthi Kumar
Original Paper


The use of fluorescent nanomaterials with good photostability and biocompatibility in live imaging of cells has gained increased attention. Even though several imaging techniques have been reported for mammalian cells, very limited literatures are available for nanomaterial based live imaging in plant system. We studied the uptake ability of two different nanomaterials, the highly photostable CdSe quantum dots and highly biocompatible FITC-labeled silica nanoparticles by rice seedlings which could provide greater opportunities for developing novel in vivo imaging techniques in plants. The effects of these nanomaterials on rice seed germination have also been studied for analyzing their phytotoxic effects on plants. We observed good germination of seeds in the presence of FITC-labeled silica nanoparticles whereas germination was arrested with quantum dots. The uptake of both the nanomaterials has been observed with rice seedlings, which calls for more research for recommending their safe use as biolabels in plants.


Fluorescent silica nanoparticles Quantum dots Germination of rice seeds Photobleaching Biolabeling in plants 



Remya Nair and Aby C. Poulose thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan for the financial support given as Monbukagakusho fellowship


  1. 1.
    Lin Y-S, Tsai C-P, Huang H-Y, Kuo C-T, Hung Y, Huang D-M, Chen Y-C, Mou C-Y (2005) Well ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17:4570–4573CrossRefGoogle Scholar
  2. 2.
    Santra S, Yang H, Dutta D, Stanley JT, Holloway PH, Tan W, Moudgil BM, Mericle RA (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun 24:2810–2811CrossRefGoogle Scholar
  3. 3.
    Hoecke KV, De Schamphelaere KAC, der Meeren PV, Lucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green algae Pesudokirchneriella subcapitata: Importance of surface area. Environ Toxicol Chem 27:1948–1957PubMedCrossRefGoogle Scholar
  4. 4.
    Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J (2010) Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci 22:155–160CrossRefGoogle Scholar
  5. 5.
    Lin B-S, Diao S-Q, Li C-H, Fang L-J, Qiao S-C, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15:138–140CrossRefGoogle Scholar
  6. 6.
    Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  7. 7.
    Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2:295–300CrossRefGoogle Scholar
  8. 8.
    Hischemoller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotech 5:278–284CrossRefGoogle Scholar
  9. 9.
    Bailey RE, Smith AM, Shuming N (2004) Quantum dots in biology and medicine. Phys E 25:1–12CrossRefGoogle Scholar
  10. 10.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sndaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544PubMedCrossRefGoogle Scholar
  11. 11.
    Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erb/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203PubMedCrossRefGoogle Scholar
  12. 12.
    Guo G, Liu W, Liang J, He Z, Xu H, Yang X (2007) Proing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett 61:1641–1644CrossRefGoogle Scholar
  13. 13.
    Gagne F, Auclair J, Turcotte P, Fournier M, Gagnon C, Sauve S, Blaise C (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86:333–340PubMedCrossRefGoogle Scholar
  14. 14.
    Lin S, Bhattacharya P, Rajapakse NC, Brune DE, Ke PC (2009) Efffects of quantum dots adsorption on algal photosynthesis. J Phys Chem C 113:10962–10966CrossRefGoogle Scholar
  15. 15.
    Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells. Plant Signaling Behav 1:196–200CrossRefGoogle Scholar
  16. 16.
    Ravindran S, Kim S, Martin R, Lord EM, Ozkan CS (2005) Quantum dots as biolabels for the localization of a small plant adhesion protein. Nanotechnology 16:1–4CrossRefGoogle Scholar
  17. 17.
    Muller F, Houben A, Barker PE, Xiao Y, Kas JA, Melzer M (2006) Quantum dots-a versatile tool in plant science. J Nanobiotechnol 4:5–10CrossRefGoogle Scholar
  18. 18.
    Eggenberger K, Frey N, Zienicke B, Siebenbrock J, Schunck T, Fischer R, Brase S, Birtalan E, Nann T, Nick P (2010) Use of nanoparticles to study and manipulate plant cells. Adv Eng Mater 12:B406–B412CrossRefGoogle Scholar
  19. 19.
    Hu Y, Li J, Ma L, Peng Q, Feng W, Zhang L, He S, Yang F, Huang J, Li L (2010) High efficiency transport of quantum dots into plant roots with the aid of silwet L-77. Plant Physiol Biochem 48:703–709PubMedCrossRefGoogle Scholar
  20. 20.
    Boatman EM, Lisensky GC (2005) A safer, easier, faster synthesis for CdSe quantum dot nanocrystals. J Chem Educ 11:1697–1699Google Scholar
  21. 21.
    Xie R, Kolb U, Li J, Basche T, Mews A (2005) Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127:7480–7488PubMedCrossRefGoogle Scholar
  22. 22.
    Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018PubMedCrossRefGoogle Scholar
  23. 23.
    Han Y, Jiang J, Lee SS, Ying JY (2008) Reverse microemulsion mediated synthesis of silica coated gold and silver nanoparticles. Langmuir 24:5842–5848PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao L, Zhao Y, Han Y (2010) Pore fabrication in various silica-based nanoparticles by controlled etching. Langmuir 26:11784–11789PubMedCrossRefGoogle Scholar
  25. 25.
    Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Remya Nair
    • 1
  • Aby C. Poulose
    • 1
  • Yutaka Nagaoka
    • 1
  • Yasuhiko Yoshida
    • 1
  • Toru Maekawa
    • 1
  • D. Sakthi Kumar
    • 1
  1. 1.Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New ScienceToyo UniversityKawagoeJapan

Personalised recommendations