Journal of Fluorescence

, Volume 21, Issue 5, pp 1921–1931 | Cite as

A Multifunctional Fluorescence Probe for the Detection of Cations in Aqueous Solution: the Versatility of Probes Based on Peptides

  • Bin Wang
  • Hong-Wei Li
  • Yang Gao
  • Houyu Zhang
  • Yuqing Wu
Original Paper


We synthesized a tetra-functional fluorescence probe based on dansyl and peptide motif, dansyl-Gly-Trp (DGT, 1), that efficiently bound several metal ions and showed distinguishing optical properties. The probe 1 could respond to Hg2+ with enhanced and blue-shifted fluorescence emission but to Cu2+ with obvious fluorescence quenching. In addition, 1 was sensitive to pH ranging from 2.0 to 5.0 and precipitated in the presence of Pb2+ at neutral conditions. The combination of these intrinsic properties with the selective responses to different chemical inputs allows this system to be implemented as an ionic switch. Furthermore, 1 could penetrate the cell membrane and accumulated well in intracellular region. The underlying mechanisms of the probe to different kind of metal ion were explored successfully by using either 1H NMR, NOESY, electron paramagnetic resonance (EPR) or FT-IR spectra. In addition, to investigate the binding model of 1/Hg2+ and 1/Cu2+, simulations were also performed by using density functional theory (DFT) and reasonable binding configurations were achieved for these two complexes.


Peptide Fluorescence probe Multifunction Mercury Copper 



The authors are grateful to the projects of the Natural Science Foundation of China (No. 20934002 and 20973073), the National Basic Research Program (2007CB808006), the Programs for New Century Excellent Talents in University (NCET) and the 111 Project (B06009).

Supplementary material

10895_2011_891_MOESM1_ESM.doc (1.9 mb)
ESM 1 Supporting Informations (DOC 1.87 mb)


  1. 1.
    McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109(10):4780–4827PubMedCrossRefGoogle Scholar
  2. 2.
    Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detectin of mercuric ion. Chem Rev 108(9):3443–3480PubMedCrossRefGoogle Scholar
  3. 3.
    Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108(5):1517–1549PubMedCrossRefGoogle Scholar
  4. 4.
    Kou S, Lee HN, van Noort D, Swamy KMK, Kim SH, Soh JH, Lee K-M, Nam S-W, Yoon J, Park S (2008) Fluorescent molecular logic gates using microfluidic devices. Angew Chem Int Ed 47(5):872–876CrossRefGoogle Scholar
  5. 5.
    Suresh M, Ghosh A, Das A (2008) A simple chemosensor for Hg2+ and Cu2+ that works as a molecular keypad lock. Chem Commun 23(33):3906–3908CrossRefGoogle Scholar
  6. 6.
    Dhir A, Bhalla V, Kumar M (2008) Ratiometric sensing of Hg2+ based on the calix[4]arene of partial cone conformation possessing a dansyl moiety. Org Lett 10(21):4891–4894PubMedCrossRefGoogle Scholar
  7. 7.
    Kaur N, Singh N, Cairns D, Callan JF (2009) A multifunctional tripodal fluorescent probe: “off-on” detection of sodium as well as two-input and molecular logic behavior. Org Lett 11(11):2229–2232PubMedCrossRefGoogle Scholar
  8. 8.
    Ma L, Liu Y, Wu Y (2006) A tryptophan-containing fluoroionophore sensor with high sensitivity to and selectivity for lead ion in water. Chem Commun 21(25):2702–2704CrossRefGoogle Scholar
  9. 9.
    Ma L, Li Y, Li L, Sun J, Tian C, Wu Y (2008) A protein-supported fluorescent reagent for the highly-sensivive and selective detection of mercuy ions in aqueous solution and live cells. Chem Commun 23(47):6345–6437CrossRefGoogle Scholar
  10. 10.
    Li H-W, Li Y, Dang Y-Q, Ma L-J, Wu Y, Hou G, Wu L (2009) An easily prepared hypersensitive water-soluble fluorescent probe for mercury(II) ions. Chem Commun 24(29):4453–4455CrossRefGoogle Scholar
  11. 11.
    Joshi BH, Park J, Lee WI, Lee KH (2009) Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. Talanta 78(3):903–909PubMedCrossRefGoogle Scholar
  12. 12.
    Zheng Y, Leblanc RM (2002) A dansylated peptide for the selective detection of copper ions. Chem Commun 17(20):2350–2351CrossRefGoogle Scholar
  13. 13.
    Berton M, Mancin F, Stocchero G, Tecilla P, Tonellato U (2001) Self-assembling in surfactant aggregates: an alternative way to the realization of fluorescence chemosensors for Cu(II) ions. Langmuir 17(24):7521–7528CrossRefGoogle Scholar
  14. 14.
    Zheng Y, Leblanc RM (2003) Peptidyl fluorescent chemosensors for the detection of divalent copper. Anal Chem 75(7):1706–1712PubMedCrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. 02 Gaussian, Inc., WallingfordGoogle Scholar
  16. 16.
    Taki M, Desaki M, Ojida A, Iyoshi S, Hirayama T, Hamachi I, Yamamoto Y (2008) Fluorescnece imaging of intracellular cadmium using a dual-excitation rationmetric chemosensor. J Am Chem Soc 130(38):12564–12565PubMedCrossRefGoogle Scholar
  17. 17.
    Metiver R, Leray I, Valeur B (2004) Photophysics of calixarenes bearing two or four dansyl fluorophores: charge, proton and energy transfers. Photochem Photobiol Sci 3(4):374–380CrossRefGoogle Scholar
  18. 18.
    Chandrasekhar V, Bag P, Pandey MD (2009) Phosphorus-supported multidentate coumarin-containing fluorescence sensor for Cu2+. Tetrahedron 65(47):9876–9883CrossRefGoogle Scholar
  19. 19.
    Rurack K, Resch-Genger U (2002) Rigidization, preorientation and electronic decoupling- the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31(2):116–127PubMedCrossRefGoogle Scholar
  20. 20.
    Bag B, Bharadwaj PK (2005) Perturbation of the PET process in fluorophore-spacer-receptor systems through structural modification: transition metal induced fluorescence enhancement and selectivity. J Phys Chem B 109(10):4377–4390PubMedCrossRefGoogle Scholar
  21. 21.
    Bi X, Heng CH, Yang K-L (2008) A method of obtaining high selectivity for copper ions on triglycine decorated surfaces. J Phys Chem C 112(33):12887–12893CrossRefGoogle Scholar
  22. 22.
    The U.S. Enviromental Protection Agency (EPA) has set the limit of copper in drinking water to be 1.3 ppm (∼20 μM)Google Scholar
  23. 23.
    Wang J, Wang D, Miller EK, Moses D, Bazan GC and Heeger AJ (2000) Photoluminescence of water-soluble conjugated polymers: origin of enhanced quenching by charge transfer. Macromolecules 33(14):5153–5158CrossRefGoogle Scholar
  24. 24.
    Deacon GB, Phillips RH (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylate complexes and the type of carboxylate coordination. Coord Chem Rev 33(3):227–250CrossRefGoogle Scholar
  25. 25.
    Nakamoto K (1986) Infrared and Raman spectra. Wiley, New YorkGoogle Scholar
  26. 26.
    Wold CR, Ni H, Soucek MK (2001) Model reaction study on the interaction between the inorganic and organic phases in drying oil based creamer coatings. Chem Mater 13(9):3032–3037CrossRefGoogle Scholar
  27. 27.
    Ren Y, Iimura KI, Ogawa A, Kato T (2001) Surface micelles of CF3(CF2)(7)(CH2)(10)COOH on aqueous La3+ subphase investigated by atomic force microscopy and infrared spectroscopy. J Phys Chem B 105(19):4305–4312CrossRefGoogle Scholar
  28. 28.
    Finnie KS, Bartlett JR, Woolfrey JL (1998) Vibrational spectroscopic study of the coordination of (2,2-‘-bipyridyl-4,4’-dicarboxylic acid) ruthenium (II) complexes to the surface of nanocrystalline titania. Langmuir 14(10):2744–2749CrossRefGoogle Scholar
  29. 29.
    Ma L-J, Li H-W, Wu Y (2009) A pyrene-containing fluorescent sensor with high selectivity for Lead (II) ion in water with dual illustration of ground-state dimer. Sens Actuators B 143(1):25–29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bin Wang
    • 1
  • Hong-Wei Li
    • 1
  • Yang Gao
    • 1
  • Houyu Zhang
    • 1
  • Yuqing Wu
    • 1
  1. 1.State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchunChina

Personalised recommendations