Journal of Fluorescence

, Volume 21, Issue 4, pp 1565–1573 | Cite as

Synthesis and Photophysical Characterizations of Thermal -Stable Naphthalene Benzimidazoles

Original Paper


Microwave-assisted synthesis, photophysical and electrochemical properties of thermal-stable naphthalene benzimidazoles and naphthalimides are studied in this paper. Microwave-assisted synthesis of naphthalene benzimidazoles provide higher yields than the conventional thermal synthesis. Comparative photophysical properties of naphthalene benzimidazoles and naphthalimides are revealed that conjugation of electron-donating group onto naphthalimide moiety increases fluorescence quantum yields. Fluorophore-solvent interactions are also investigated using Lippert-Mataga equation for naphthalimides and naphthalene benzimidazoles. Thermal stabilities of naphthalene benzimidazoles are better than naphthalimides due to increased aromaticity. The experimental ELUMO levels of naphthalene benzimidazoles are found to be between 3.15 and 3.28 eV. Therefore, naphthalene benzimidazole derivatives consisting of anchoring groups are promising materials in organic dye sensitized solar cells.


Naphthalene benzimidazole Naphthalimide Absorption Emission Cyclic voltammetry TGA curves 



We acknowledge financial support from Scientific and Technological Research Council of Turkey, TUBITAK, TBAG_106T061 and the Alexander von Humboldt Foundation of Germany and European Science Foundation (ESF) for research supports. I thank Mechanical Engineer DI. Cagatay Ela for proofreading.


  1. 1.
    Bailly C, Carrasco C, Joubert A, Bal C, Wattez N, Hildebrand MP, Lansiaux A, Colson P, Houssier C, Cacho M, Ramos A, Brãna MF (2003) Biochemistry 42:4136PubMedCrossRefGoogle Scholar
  2. 2.
    Brãna MF, Ramos A (2001) Curr Med Chem Anticancer Agents 1:237PubMedCrossRefGoogle Scholar
  3. 3.
    Zsombor M, József N, László B, Krisztina SN, Tamás K (2006) J Photochem Photobiol, A 99:182Google Scholar
  4. 4.
    Settimo AD, Primofiore G, Ferrarini PL, Ferretti M, Barili PL, Tellini N, Bianchini P (1989) Eur J Med Chem 24:263CrossRefGoogle Scholar
  5. 5.
    Saito I (1992) Pure Appl Chem 64:1305CrossRefGoogle Scholar
  6. 6.
    Kirshenbaum MR, Chen SF, Behrens CH, Papp LM, Stafford MM, Sun JH, Behrens DL, Fredericks JR, Polkus ST, Sipple P, Patten AD, Dexter D, Seitz SP, Gross JL (1994) Cancer Res 54:2199PubMedGoogle Scholar
  7. 7.
    Dorlars A, Schellhammer CW, Schroeder J (1975) Angew Chem Int Ed Engl 14:665CrossRefGoogle Scholar
  8. 8.
    Stewart WW (1981) Nature 292:17PubMedCrossRefGoogle Scholar
  9. 9.
    Brana MF, Castellano JM, Roldan CM, Santos A, Vazquez D, Jimenez A (1980) Cancer Chemother Pharmacol 4:61PubMedCrossRefGoogle Scholar
  10. 10.
    Braña MF, Castellano JM, Morán M, Pérez de Vega MJ, Qian XD, Romerdahl CA, Keilhauer G (1995) Eur J Med Chem 30:235CrossRefGoogle Scholar
  11. 11.
    Chatterjee S, Pramanik S, Hossain SU, Bhattacharya S, Subhash Bhattacharya C (2007) J Photochem Photobiol, A 187:64CrossRefGoogle Scholar
  12. 12.
    Xuhong Q, Zhenghua Z, Kongchang C (1989) Dyes Pigm 11:13CrossRefGoogle Scholar
  13. 13.
    Marling JB, Hawley JG, Liston EM, Grant WB (1974) Appl Opt 13:2317PubMedCrossRefGoogle Scholar
  14. 14.
    Grabchev I, Moneva I, Bojinov V, Guittonneau S (2000) J Mater Chem 10:1291CrossRefGoogle Scholar
  15. 15.
    Pardo A, Martin E, Poyato JML, Camacho JJ, Guerra JM, Weigand R, Braña JMF, Castellano JM (1989) J Photochem Photobiol, A 48:259CrossRefGoogle Scholar
  16. 16.
    Martin E, Weigand R, Pardo A (1996) J Lumin 68:157CrossRefGoogle Scholar
  17. 17.
    Singh ThB, Erten S, Gunes S, Zafer C, Turkmen G, Kuban B, Teoman Y, Sariciftci NS, Icli S (2006) Org Electron 7:480CrossRefGoogle Scholar
  18. 18.
    Plakidin VL, Kosheleva ES (1975) Zhur Organ Khim 11:1512Google Scholar
  19. 19.
    Jiang W, Tang J, Qi Q, Sun Y, Ye H, Fu D (2009) Dyes Pigm 3:279CrossRefGoogle Scholar
  20. 20.
    Martin E, Coronado JLGu, Camacho JJ, Pardo A (2005) J Photochem Photobiol, A 175:1CrossRefGoogle Scholar
  21. 21.
    Erten S, Eren E, Icli S (2007) Eur Phys J Appl Phys 38:227CrossRefGoogle Scholar
  22. 22.
    Erten S, Icli S (2008) Inorg Chim Acta 361:595CrossRefGoogle Scholar
  23. 23.
    Wintgens V, Valat P, Kossanyi J, Demeter A, Biczok L, Berces T (1996) New J Chem 20:1149Google Scholar
  24. 24.
    Lee CM, Kumler WD (1962) J Org Chem 27:2055CrossRefGoogle Scholar
  25. 25.
    Berci FP, Toscano VG, Politi MJ (1988) J Photochem Photobiol, A 43:51CrossRefGoogle Scholar
  26. 26.
    Almeida FCL, Toscano VG, Dos Santos O, Politi MJ, Neumann MG, Berci Filho P (1991) J Photochem Photobiol, A 58:289CrossRefGoogle Scholar
  27. 27.
    Wintgens V, Valat P, Kossanyi J, Biczok L, Demeter A, Bérces T (1994) J Chem Soc, Faraday Trans 90:411CrossRefGoogle Scholar
  28. 28.
    Brochsztain S, Rodrigues MA, Politi MJ (1997) J Photochem Photobiol, A Chem 107:195CrossRefGoogle Scholar
  29. 29.
    Barros TC, Molinari GR, Berci Filho P, Toscano VG, Politi MJ (1993) J Photochem Photobiol, A Chem 76:55CrossRefGoogle Scholar
  30. 30.
    Demets GJ-F, Triboni ER, Alvarez EB, Arantes GM, Filho PB, Politi MJ (2006) Spectrochim Acta A 63:220–226Google Scholar
  31. 31.
    Niu CG, Qin PZ, Zeng GM, Gui XQ, Guan AL (2007) Anal Bioanal Chem 387:1067PubMedCrossRefGoogle Scholar
  32. 32.
    Nandhikonda P, Begaye MP, Cao Z, Heagy MD (2009) Chem Commun 45:4941–4943Google Scholar
  33. 33.
    Lippert VEZ (1957) Elektrochem 61:962Google Scholar
  34. 34.
    Mataga N, Kaifu Y, Koizumi M (1956) Bull Chem Soc Jpn 29:465CrossRefGoogle Scholar
  35. 35.
    Mataga N (1963) Bull Chem Soc Jpn 36:654CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Ege University, Solar Energy InstituteIzmirTurkey
  2. 2.Chemistry DepartmentIzmir Institute of TechnologyIzmirTurkey

Personalised recommendations