Journal of Fluorescence

, Volume 21, Issue 4, pp 1455–1460 | Cite as

Photoluminescence Studies of Pr3+ Doped Lead Germanate Glass

Original Paper


The Pr3+doped PbO-GeO2 glass samples have been synthesized by melting and quenching process. The nephelauxetic ratio, covalency and bonding parameter which provides the information about the type of bonding between the rare earth ion and neighbor oxygen atoms calculated. The optical parameters such as radiative transition probabilities, radiative lifetime, branching ratios etc. of Pr3+ ions have been determined by Judd-Ofelt analysis. An upconversion emission using the excitation at ~594 nm supported by energy transfer process due to dipole-dipole interaction in the 1D2 metastable state has been found.


Oscillator strength Judd-ofelt formalism Nephelauxetic ratio Covalency Bonding parameter Upconversion Energy transfer Dipole-dipole interaction 



Authors are grateful to Department of Science and Technology, New Delhi and Indian School of Mines, Dhanbad, India for their financial assistance.


  1. 1.
    Yamane M, Ashahara Y (2000) Glasses for photonics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Kaminiski AA (1990) Laser crystals, 2nd edn. Springer-Verly, BerlinGoogle Scholar
  3. 3.
    Rai A, Rai VK (2005) J Indian Chem Soc 82:697Google Scholar
  4. 4.
    de Araujo LEE, Gomes ASL, de Araujo CB, Messadeq Y, Florez A, Aegerter MA (1994) Phys Rev B 50:16219CrossRefGoogle Scholar
  5. 5.
    Ehrt D (2003) Curr Opin Solid State Mater Sci 7:135CrossRefGoogle Scholar
  6. 6.
    Victor TK, Raffaella R, Maurizio M, Maurizio F. In: Jiang S (ed) Rare earth doped materials and devices Iv, Proc. SPIE, Vol. 3942,4/2000, pp 174–182Google Scholar
  7. 7.
    Balda R, Fernadez J, Depables A, Fdez-Navarro JM (1999) J Phys Condens Matter 11:7411CrossRefGoogle Scholar
  8. 8.
    Balda R, Fernadez J, Mendioroz A, Al-Saleh M. In: Jiang S, Keys RW (eds) Rare earth doped materials and devices VI, Proc. SPIE, Vol. 4645, 4/2002, pp 97–104Google Scholar
  9. 9.
    Naranjo LP, de Arauzo CB, Malta OL, Cruz PAS, Kassab LRP (2005) Appl Phys Lett 87:241914CrossRefGoogle Scholar
  10. 10.
    Rai VK, de S. Menzes L, de Araujo CB, Kassab LRP, da Silva DM, Kobayashi RA (2008) J Appl Phys 103:093526CrossRefGoogle Scholar
  11. 11.
    Kassab LRP, de Araujo CB, Kobayashi RA, Pinto RA, Da Silva DM (2007) J Appl Phys 102:103515CrossRefGoogle Scholar
  12. 12.
    Rai VK, Kumar K, Rai SB (2007) Opt Mater 29:873CrossRefGoogle Scholar
  13. 13.
    Rai VK, de S. Menezes L, de Araujo CB (2007) J Appl Phys 101:123514CrossRefGoogle Scholar
  14. 14.
    Offelt GS (1962) J Chem Phys 37:511CrossRefGoogle Scholar
  15. 15.
    Judd BR (1962) Phys Rev 127:750CrossRefGoogle Scholar
  16. 16.
    Carnall WT, Fields PR, Rajnak K (1968) J Chem Phys 49:4424CrossRefGoogle Scholar
  17. 17.
    Jorgensen CK (1971) Modern aspects of ligand field theory. North-Holand, AmsterdamGoogle Scholar
  18. 18.
    Jorgensen CK, Ryan L (1966) J Phys Chem 70:2845CrossRefGoogle Scholar
  19. 19.
    Jorgensen CK, Judd BR (1964) Mol Phys 8:281CrossRefGoogle Scholar
  20. 20.
    Henrie DE, Fellow RL, Choppin GR (1976) Coord Chem Rev 18:429CrossRefGoogle Scholar
  21. 21.
    Bhatt PN, Pathak TV, Bhadani PJ, Misra SN (2007) Indian J Chem A 46:39Google Scholar
  22. 22.
    Condon SU, Shortley GH (1963) The theory of atomic spectra. Cambridge University Press, EnglandGoogle Scholar
  23. 23.
    Jorgensen CK (1962) J Inorg Nucl Chem 24:1571CrossRefGoogle Scholar
  24. 24.
    Hussain HA (2003) Ph.D. Thesis, Jamia Millia Islamia, New Delhi, IndiaGoogle Scholar
  25. 25.
    Rai N, Jha Y, Kamal KP, Kumar S, Rai VK (2010) Spectrochim Acta Part A 76:311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Applied PhysicsIndian School of MinesDhanbadIndia

Personalised recommendations