Journal of Fluorescence

, Volume 21, Issue 2, pp 497–506 | Cite as

A Series of Carbazole Cationic Compounds with Large Two-Photon Absorption Cross Sections for Imaging Mitochondria in Living Cells with Two-Photon Fluorescence Microscopy

  • Xin Liu
  • Yuming Sun
  • Yuanhong Zhang
  • Ning Zhao
  • Hongshi Zhao
  • Guancong Wang
  • Xiaoqiang Yu
  • Hong Liu
Original Paper


A series of carbazole cationic compounds based on donor- Π—acceptor (D-Π-A) structure were synthesized and characterized. They exhibit large two-photon absorption cross sections when excited by a 810 nm a laser beam, and their photophysical properties show that the intramolecular charge transfer (ICT) character is predominant. Moreover these compounds can easily pass though the intact cell membrane of living cells, amongst, 3-(1-hydroxyethyl -4-vinylpyridium iodine)-N-butyl carbazole (9B-HVC) has been proven to be capable of accumulating within the mitochondria possessing large membrane potential and imaging this organelle in living cells by means of two-photon fluorescence microscopy. At the same time usable fluorescent photos can be obtained at lower incident excitation power (5 mW) and low-micromolar concentrations (2 μM), which does not result in significant reduction in cell viability over a period of at least 24 h.


Two-photon microscopy Mitochondria Fluorescent probe Living cells 



For financial support, we thank the National Science Foundation of China (50673053, 50173015, 50925205, 50990303 and 50872070) and NSFC/RGC (50218001). Also Open Project of State Key Laboratory of Supramolecular Structure and Materials, Independent Innovation Foundation of Shandong University, (2009JC011) and the Program of Introducing Talents of Discipline to Universities in China (111 programNo. b06015).


  1. 1.
    Sanadi DR (1965) Energy-linked reactions in mitochondria. Annu Rev Biochem 34:21–48PubMedCrossRefGoogle Scholar
  2. 2.
    Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett 396(1):7–13PubMedCrossRefGoogle Scholar
  3. 3.
    Lambert AJ, Brand MD (2009) Reactive oxygen species production by mitochondria. Methods Mol Biol 554:165–181PubMedCrossRefGoogle Scholar
  4. 4.
    Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38(3-4):311–317PubMedCrossRefGoogle Scholar
  5. 5.
    Boldogh IR, Pon LA (2007) Mitochondria on the move. Trends Cell Biol 17(10):502–510PubMedCrossRefGoogle Scholar
  6. 6.
    Rouiller C (1960) Physiological and pathological changes in mitochondrial morphology. Int Rev Cytol 9:227–292PubMedCrossRefGoogle Scholar
  7. 7.
    Hakenbrock CR (1968) Ultrastructural bases for metabolically linked mechanical activity in mitochondria:II.electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol 37(2):345–369CrossRefGoogle Scholar
  8. 8.
    Johnson LV, Summerhayes IC, Chen LB (1982) Decreased uptake and retention of rhodamine 123 by mitochondria in a feline sarcoma virus-transformed mink cells. Cell 28(1):7–14PubMedCrossRefGoogle Scholar
  9. 9.
    Kahlert S, Zündorf G, Reiser G (2008) Detection of de- and hyperpolarization of mitochondria of cultured astrocytes and neurons by the cationic fluorescent dye rhodamine 123. J Neurosci Methods 171(1):87–92PubMedCrossRefGoogle Scholar
  10. 10.
    So PTC, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429PubMedCrossRefGoogle Scholar
  11. 11.
    Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95(12):1154–1166PubMedCrossRefGoogle Scholar
  12. 12.
    Wang BG, König K, Halbhuber KJ (2010) Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microsc 238(1):1–20PubMedCrossRefGoogle Scholar
  13. 13.
    Yuan T, Gao SS, Saggau P, Oghalai JS (2010) Calcium imaging of inner ear hair cells within the cochlear epithelium of mice using two-photon microscopy. J Biomed Opt 15(1):016002PubMedCrossRefGoogle Scholar
  14. 14.
    Merlo F, Balduzzi R, Cupello A, Robello M (2004) Immunocytochemical study by two photon fluorescence microscopy of the distribution of GABA(A) receptor subunits in rat cerebellar granule cells in culture. Amino Acids 26(1):77–84PubMedCrossRefGoogle Scholar
  15. 15.
    Ghosh S, Kim D, So P, Blankschtein D (2008) Visualization and quantification of skin barrier perturbation induced by surfactant-humectant systems using two-photon fluorescence microscopy. J Cosmet Sci 59(4):263–89PubMedGoogle Scholar
  16. 16.
    Koepsell H (2007) In vivo two-photon fluorescence microscopy opens a new area for investigation of the excretion of cationic drugs in the kidney. Kidney Int 72(4):387–388PubMedCrossRefGoogle Scholar
  17. 17.
    Dedov VN, Cox GC, Roufogalis BD (2001) Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy. Micron 32(7):653–660PubMedCrossRefGoogle Scholar
  18. 18.
    Mqller M, Mironov SL, Ivannikov MV, Schmidt J, Richter DW (2005) Mitochondrial organization and motility probed by two-photon microscopy in cultured mouse brainstem neurons. Exp Cell Res 303(1):114–127Google Scholar
  19. 19.
    Feijό JA, Cox G (2001) Visualization of meiotic events in intact living anthers by means of two-photon microscopy. Micron 32(7):679–684CrossRefGoogle Scholar
  20. 20.
    Chen TS, Zeng SQ, Luo QM, Zhang ZH, Zhou W (2002) High-order photobleaching of green fluorescent proteininside live cells in two-photon excitation microscopy. Biochem Biophys Res Commun 291(5):1272–1275PubMedCrossRefGoogle Scholar
  21. 21.
    Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78(4):2159–2162PubMedCrossRefGoogle Scholar
  22. 22.
    Kim HM, Cho BR (2009) Two-photon probes for intracellular free metal ions, acidic aesicles, and lipid rafts in live tissues. Acc Chem Res 42(7):863–872PubMedCrossRefGoogle Scholar
  23. 23.
    Lim CS, Kang DW, Tian YS, Han JH, Hwang HL, Cho BR (2010) Detection of mercury in fish organs with a two-photon fluorescent probe. Chem Commun 46(14):2388–2390CrossRefGoogle Scholar
  24. 24.
    Lee JH, Lim CS, Tian YS, Han JH, Cho BR (2010) A two-photon fluorescent probe for thiols in live cells and tissues. J Am Chem Soc 132(4):1216–1217PubMedCrossRefGoogle Scholar
  25. 25.
    Morales AR, Schafer-Hales KJ, Yanez CO, Bondar MV, Przhonska OV, Marcus AI, Belfield KD (2009) Excited state intramolecular proton transfer and photophysics of a new fluorenyl two-photon fluorescent probe. Chemphyschem 10(12):2073–2081PubMedCrossRefGoogle Scholar
  26. 26.
    Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, Leder P (2002) A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2(1):29–42PubMedCrossRefGoogle Scholar
  27. 27.
    Filomeni G, Piccirillo S, Graziani I, Cardaci S, Da Costa Ferreira AM, Rotilio G, Ciriolo MR (2009) The isatin-schiff base copper(II) complex Cu(isaepy)2 acts as delocalized lipophilic cation, yields widespread mitochondrial oxidative damage and induces AMP-activated protein kinase-dependent apoptosis. Carcinogenesis 30(7):1115–1124PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson LV, WalshML CLB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 77(2):990–994PubMedCrossRefGoogle Scholar
  29. 29.
    Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777(7–8):1028–1031PubMedGoogle Scholar
  30. 30.
    Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, Da Ros T, Hurd T, Smith RA, Murphy MP (2005) Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Moscow) 70(2):222–230CrossRefGoogle Scholar
  31. 31.
    Hoegl H (1965) On photoelectric effects in polymers and their sensitization by dopants. J Phys Chem 69(3):755–766CrossRefGoogle Scholar
  32. 32.
    Coe BJ (2006) Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. Acc Chem Res 39(6):383–393PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang X, Yu XQ, Sun YM, Xu HY, Feng YG, Huang BB, Tao XT, Jiang MH (2006) Synthesis, structure and nonlinear optical properties of two new one and two-branch two-photon polymerization initiators. Chem Phys 328(1–3):103–110CrossRefGoogle Scholar
  34. 34.
    Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13(3):481–491CrossRefGoogle Scholar
  35. 35.
    Edmondson JM, Armstrong LS, Martinez AO (1988) A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J Tissue Cult Methods 11(1):15–17CrossRefGoogle Scholar
  36. 36.
    Lee S, Thomas KR, Thayumanavan S, Bardeen CJ (2005) Dependence of the two-photon absorption cross section on the conjugation of the phenylacetylene linker in dipolar donor-bridge-acceptor chromophores. J Phys Chem A 109(43):9767–9774PubMedCrossRefGoogle Scholar
  37. 37.
    Castex MC, Olivero C, Pichler G, Adés D, Cloutet E, Siove A (2001) Photoluminescence of donor–acceptor carbazole chromophores. Synth Met 122(1):59–61CrossRefGoogle Scholar
  38. 38.
    Adés D, Boucard V, Cloutet E, Siove A, Olivero C, Castex MC, Pichler G (2000) Photoluminescence of donor-acceptor carbazole-based molecules in amorphous and powder forms. J Appl Phys 87(10):7290–7293CrossRefGoogle Scholar
  39. 39.
    Chang CC, Chu JF, Kuo HH, Kang CC, Lin SH, Chang TC (2006) Solvent effect on photophysical properties of a fluorescence probe: BMVC. J Lumin 119:84–90CrossRefGoogle Scholar
  40. 40.
    Dean JA (ed) (1973) Handbook of chemistry. McGraw-Hill, New YorkGoogle Scholar
  41. 41.
    Bosch P, FernaÂndez-Arizpe A, Mateo JL, Lozano AE, Noheda P (2000) New fluorescent probes for monitoring polymerisation reactions: 1. Synthesis, solvatochromism and emission properties. J Photochem Photobiol A Chem 133(1–2):51–57CrossRefGoogle Scholar
  42. 42.
    Qin W, Baruah M, Sliwa M, Van der Auweraer M, De Borggraeve WM, Beljonne D, Van Averbeke B, Boens N (2008) Ratiometric, fluorescent BODIPY dye with aza crown ether functionality: synthesis, solvatochromism, and metal ion complex formation. J Phys Chem A 112(27):6104–6114PubMedCrossRefGoogle Scholar
  43. 43.
    Malak H, Castellano FN, Gryczynski I, Lakowicz JR (1997) Two-photon excitation of ethidium bromide labeled DNA. Biophys Chem 67:35–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xin Liu
    • 1
  • Yuming Sun
    • 2
  • Yuanhong Zhang
    • 1
  • Ning Zhao
    • 1
  • Hongshi Zhao
    • 1
  • Guancong Wang
    • 1
  • Xiaoqiang Yu
    • 1
  • Hong Liu
    • 1
  1. 1.State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China
  2. 2.Optics DepartmentShandong UniversityJinanPeople’s Republic of China

Personalised recommendations