Journal of Fluorescence

, Volume 21, Issue 1, pp 443–451 | Cite as

Synthesis and Spectroscopic Study of Several Novel Annulated Azulene and Azafluoranthene Based Derivatives

  • P. Ga̧siorski
  • K. S. Danel
  • M. Matusiewicz
  • T. Uchacz
  • R. Vlokh
  • A. V. Kityk
Short Communication


A series of cyclized five-membered annulated azafluoranthene (AAF) and seven-membered annulated azulene (AA) derivatives have been synthesized and characterized by spectroscopic methods. The optical absorption and fluorescence spectra have been recorded in organic solvents of different polarity and analyzed within the semiempirical quantum chemical model PM3. In combination with the molecular dynamics simulations it properly reproduces the overall shape of the measured absorption spectra of both AA and AAF dyes including the strongest band in the region of 250–300 nm and the broad first absorption band above 400 nm. While the solvent polarity rises all the dyes exhibit the hypsochromic shift of the first absorption band and the bathochromic shift of the fluorescence band. Such opposite solvatochromic trends appear to be consistent with the Lippert–Mataga solvatochromic model. Compared to AA compounds, both AAF dyes reveal much stronger solvatochromic shift and broadening of the fluorescence band likewise the relative decrease in quantum yield on rising solvent polarity what may be an evidence for the intramolecular charge transfer mechanism being involved into the fluorescence emission. Depending on solvent polarity AA and AAF dyes emit light in the green–yellow range of the visible spectra what may be of interest for potential luminescent or electroluminescent applications.


Annulated azafluoranthenes Annulated azulenes Optical absorption spectra Fluorescence spectra 


  1. 1.
    Speiser S, Shakkour N (1985) Photoquenching parameters for commonly used laser-dyes. Appl Phys B 38:191–197CrossRefGoogle Scholar
  2. 2.
    Tu J, Li N, Chi Y, Qu S, Wang C, Yuan Q, Li X, Qiu S (2009) The study of photoluminescence properties of Rhodamine B encapsulated in mesoporous silica. Mater Chem Phys 118:273–276CrossRefGoogle Scholar
  3. 3.
    Całus S, Gondek E, Danel A, Jarosz B, Pokladko M, Kityk AV (2007) Electroluminescence of 6-R-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline-based organic light-emitting diodes (R = F, Br, Cl, CH3, C2H3 and N(C6H5)2). Mater Lett 61:3292–3295CrossRefGoogle Scholar
  4. 4.
    Gondek E, Całus S, Danel A, Kityk AV (2008) Photoluminescence and electrolurninescence of methoxy and carboethoxy derivatives of 1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline. Spectrochim Acta Part A 69:22–26CrossRefGoogle Scholar
  5. 5.
    Rechthaler K, Rotkiewicz K, Danel A, Tomasik P, Khatchatryan K, Köhler G (1997) Emissive properties and intramolecular charge transfer of pyrazoloquinoline derivatives. J Fluoresc 7:301–309CrossRefGoogle Scholar
  6. 6.
    Parusel ABJ, Rechthaler K, Piorun D, Danel A, Khatchatryan K, Rotkiewicz K, Köhler G (1998) Fluorescence properties of donor-acceptor-substituted pyrazoloquinolines. J Fluoresc 8:375–387CrossRefGoogle Scholar
  7. 7.
    Całus S, Gondek E, Danel A, Jarosz B, Nizioł J, Kityk AV (2007) Photoluminescence of methoxy and carboethoxy derivatives of 1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline: experiment and quantum-chemical simulations. Mater Sci Eng B 137:255–262CrossRefGoogle Scholar
  8. 8.
    Całus S, Gondek E, Danel A, Jarosz B, Kityk AV (2007) Photoluminescence of 1,3-Diphenyl-1H-pyrazolo[3,4-b]quinoline and its derivatives: experiment and quantum chemical simulations. Opt Commun 271:16–23CrossRefGoogle Scholar
  9. 9.
    Koścień E, Gondek E, Pokladko M, Jarosz B, Vlokh RO, Kityk AV (2009) Photoluminescence of 1,3-dimethyl pyrazoloquinoline derivatives. Mater Chem Phys 114:860–867CrossRefGoogle Scholar
  10. 10.
    Gondek E, Danel A, Kwiecień B, Nizioł J, Kityk AV (2010) Photoluminescence spectra of bisphenol A based pyrazoloquinoline dimers in different solvents: experiment and quantum chemical calculations. Mater Chem Phys 119:140–144CrossRefGoogle Scholar
  11. 11.
    Koścień E, Gondek E, Jarosz B, Danel A, Nizioł J, Kityk AV (2009) Photoluminescence of 1-phenyl,3-methyl pyrazoloquinoline derivatives. Spectrochim Acta Part A 72:582–590CrossRefGoogle Scholar
  12. 12.
    Mac M, Uchacz T, Andrzejak M, Danel A, Szlachcic P (2007) Photophysical properties of some donor-acceptor 1H-pyrazolo[3,4-b]quinolines—radiative versus non-radiative electron transfer processes. J. Photochem Photobiol A 187:78–86CrossRefGoogle Scholar
  13. 13.
    Danel KS, Wisła A, Uchacz T (2009) Unexpected intramolecular cyclization of 4-(2-halophenyl)-1H-pyrazolo[3,4-b]quinolines: formation of 5-and 7-membered rings from one starter. ARKIVOC x:71–78Google Scholar
  14. 14.
    Całus S, Danel KS, Uchacz T, Kityk AV (2010) Optical absorption and fluorescence spectra of novel annulated analogues of azafluoranthene and azulene dyes. Mater Chem Phys 121:477–483CrossRefGoogle Scholar
  15. 15.
    Danel KS, Ga̧siorski P, Matusiewicz M, Całus S, Uchacz T, Kityk AV (2010) UV–vis spectroscopy and semiempirical quantum chemical studies on methyl derivatives of annulated analogues of azafluoranthene and azulene dyes. Spectrochim Acta Part A 77:16–23CrossRefGoogle Scholar
  16. 16.
    Ga̧siorski P, Danel KS, Matusiewicz M, Uchacz T, Kityk AV (2010) From pirazoloquinolines to annulated azulene dyes: UV–VIS spectroscopy and quantum chemical study. J Lumin. doi: 10.1016/j.jlumin.2010.08.013 Google Scholar
  17. 17.
    Koścień E, Sanetra J, Gondek E, Danel A, Wisła A, Kityk AV (2003) Optical absorption measurements and quantum-chemical simulations on 1H-pyrazolo[3,4-b]quinoline derivatives. Opt Commun 227:115–123CrossRefGoogle Scholar
  18. 18.
    Gondek E, Koścień E, Sanetra J, Danel A, Wisla A, Kityk AV (2004) Optical absorption of 1H-pyrazolo[3,4-b]quinoline and its derivatives. Spectrochim Acta Part A 60:3101–3106CrossRefGoogle Scholar
  19. 19.
    Koścień E, Sanetra J, Gondek E, Jarosz B, Kityk IV, Ebothe J, Kityk AV (2005) Optical poling effect and optical absorption of cyan, ethylcarboxyl and tert-buthyl derivatives of 1H-pyrazolo[3,4-b]quinoline: experiment and quantum-chemical simulations. Spectrochim Acta Part A 61:1933–1938CrossRefGoogle Scholar
  20. 20.
    Całus S, Gondek E, Danel A, Jarosz B, Kityk AV (2006) Optical absorption of 1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline and its derivatives. Opt Commun 268:64–74CrossRefGoogle Scholar
  21. 21.
    Kapturkiewicz A, Herbich J, Karpiuk J, Nowacki J (1997) Intramolecular radiative and radiationless charge recombination processes in donor-acceptor carbazole derivatives. J Phys Chem A 101:2332–2344CrossRefGoogle Scholar
  22. 22.
    Lippert E (1955) Dipolmoment und elektronenstruktur von angeregten molekulen. Z Naturforsch A10:541–545Google Scholar
  23. 23.
    Mataga N, Kaifu Y, Koizumi M (1955) The solvent effect on fluorescence spectrum—change of solute-solvent interaction during the lifetime of excited solute molecule. Bull Chem Soc Jpn 28:690–691CrossRefGoogle Scholar
  24. 24.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, 953 ppGoogle Scholar
  25. 25.
    Kapturkiewicz A, Nowacki J (1999) Properties of the intramolecular excited charge-transfer states of carlbazol-9-yl derivatives of aromatic ketones. J Phys Chem A 103:8145–8155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • P. Ga̧siorski
    • 1
  • K. S. Danel
    • 2
  • M. Matusiewicz
    • 1
  • T. Uchacz
    • 3
  • R. Vlokh
    • 4
  • A. V. Kityk
    • 1
  1. 1.Faculty of Electrical EngineeringCzȩstochowa University of TechnologyCzȩstochowaPoland
  2. 2.Department of ChemistryUniversity of AgricultureKrakówPoland
  3. 3.Department of ChemistryJagiellonian UniversityKrakówPoland
  4. 4.Institute of Physical OpticsLvivUkraine

Personalised recommendations